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Summary

We study the spectroscopy problem that asks which notions from a spectrum
of behavioral equivalences relate a pair of states in a transition system. This
allows a generalized handling of questions on how equivalent two programs
are.

As main result, we solve the spectroscopy problem for finite-state systems
and a hierarchy of semanticmodels known as theweak linear-time–branching-
time spectrum, due to van Glabbeek. The spectrum arises because of different
ways of understanding nondeterminism and internal behavior in models of
concurrent programs. We also treat the strong spectrum (without internal be-
havior) as well as use cases of generalized equivalence checking in verification
and concurrency theory.

Our approach relies on a quantitative understanding of spectra in terms
of how many syntactic features of Hennessy–Milner modal logic are used to
characterize equivalences.

As key trick to solve the spectroscopy problem, we prove spectra of equiv-
alence to be captured by spectroscopy games where energy budgets bound the
features an attacker may use to express differences of states. Optimal attack
strategies correspond to distinguishing formulas with a minimal usage of syn-
tax. The spectroscopy problem thus reduces to the problem of computingmin-
imal attacker-winning budgets in spectroscopy games. For this, we provide an
algorithm to compute such budgets on a wider class of Galois energy games.
The resulting spectroscopy algorithms are exponential for the PSPACE-hard
spectrum of equivalence problems, but can be instantiated to polynomial-time
solutions on the P-easy part.

Aiming for applicability, we implement the spectroscopy procedure in the
web tool equiv.io, which continues a tradition of concurrency workbenches.
Using it, we can check for dozens of equivalences at once. We apply the spec-
troscopy approach to small case studies from verification and translation of con-
current programs. Core parts of the thesis are supported by an Isabelle/HOL
formalization.

https://equiv.io


Zusammenfassung

Wir befassen uns mit dem Spektroskopie-Problem. Dieses fragt, welche Ver-
haltensgleichheiten eines Spektrums Zustände in einem Transitionssystem in
Beziehung setzen. Damit wird es möglich, die Frage, wie äquivalent zwei Pro-
gramme sind, allgemein zu handhaben.

Als Hauptergebnis lösen wir das Spektroskopie-Problem für Systeme mit
endlichem Zustandsraum und eine Hierarchie semantischer Modelle, die
als „Schwaches Linearzeit–Verzweigungszeit-Spektrum“ nach van Glabbeek
bekannt ist. Dieses Spektrum ergibt sich aus verschiedenen Wegen, Nichtde-
terminismus und internes Verhalten in Modellen nebenläufiger Programme
zu fassen. Wir behandeln auch das „Starke Spektrum“ (ohne internes Verhal-
ten) sowie diverse Anwendungsfälle generalisierter Äquivalenzprüfung in
Verifikation und Nebenläufigkeitstheorie.

Unser Ansatz ruht auf einem quantitativen Verständnis von Spektren darin,
wie viele syntaktische Möglichkeiten in Hennessy–Milner-Modallogik zur
Charakterisierung verwendet werden.

Der zentrale Trick zur Lösung des Spektroskopie-Problems ist, zu zeigen,
wie Gleichheitsspektren durch Spektroskopie-Spiele abgedeckt werden. In die-
sen begrenzen Energiebudgets die Möglichkeiten eines Angreifers, der Un-
terschiede zwischen Zuständen ausdrücken möchte. Optimale Angriffsstrate-
gien korrespondieren zu unterscheidenden Formeln, die minimale syntaktische
Möglichkeiten nutzen. Das Spektroskopie-Problem reduziert sich damit auf
die Berechnungminimaler Budgets, mit denen der Angreifer in Spektroskopie-
Spielen gewinnt. Hierzu liefern wir einen Algorithmus, mit dem sich solche
Budgets für eine größere Klasse von Galois-Energie-Spielen ermitteln lassen.
Die sich ergebenden Spektroskopie-Algorithmen sind exponentiell für das
PSPACE-harte Spektrum von Gleichheitsproblemen, aber lassen sich zu poly-
nomiellen Lösungen für den P-einfachen Teil instanziieren.

Mit dem Ziel derAnwendbarkeit implementieren wir die Spektroskopie im
Web-Tool equiv.io. Dieses Programm folgt einer Tradition von Concurrency-
Workbenches. Mit ihm lassen sich dutzende Gleichheiten auf einmal prüfen.
Wir wenden den Spektroskopie-Ansatz in kleinen Fallbeispielen aus Verifika-
tion und Übersetzung nebenläufiger Programme an. Zentrale Teile der Arbeit
werden durch eine Isabelle/HOL-Formalisierung gestützt.

https://equiv.io
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1 My job as student research assistant was to
bridge between the tools FDR2 and UPPAAL
for Göthel (2012). The previous work I was to
base the translations on had serious flaws: One
approach introduced spurious deadlocks to the
model, the other was unable to handle nesting
of choices and parallel composition. Clearly, we
had to change the encoding!

Figure 1.1: The linear-time–branching-time
spectrum with silent moves as depicted in van
Glabbeek (1993). (Do not try to read this small
figure! Its role here is that of a symbol.This the-
sis will use a simpler version in Figure 6.5.)

1 Introduction: What’s the
Difference?

Have you ever looked at two program descriptions and wondered how equiv-
alent they are–or, conversely, how they can be distinguished?

In concurrency theory, one runs into this problem often, for instance,
when analyzing models of distributed algorithms or when devising examples
for teaching. More mundanely, the question occurs every time that someone
rewrites a program part and hopes for it to still do its job.

My first formal encounter with the question of behavioral equivalence
came when I was implementing a translation from the process algebra Timed
CSP to Timed Automata.1 How to tell whether the translation would prop-
erly honor the semantics of the two formalisms? Did it translate CSP terms
to automata with the same meaning? Even the definition of the question is
tricky, as there are different notions of what counts as “same meaning” in the
semantics of programs.

I then took my very first look into seminal work on the landscape
of process equivalences: the “linear-time–branching-time spectrum” by
van Glabbeek (1990, 1993; 2001 with a combined 2500 citations on Google
Scholar). A central figure, reproduced in Figure 1.1, mesmerized me. So many
equivalences! But, how to find out for a given pair of processes which of the
many equivalences apply? Over the years, I have learned that others, too,
have run into the not-quite-straightforward question which equivalences
hold: For instance, Nestmann & Pierce (2000) thinking about process algebra
encodings and Bell (2013) verifying compiler optimizations. We share an itch.

Our problem can abstractly be summarized as follows:
How does one conveniently decide for a pair of systems which
notions from a spectrum of behavioral equivalences equate the
two?

The above question will be the research question of this thesis. We want to en-
able future researchers to tap into the wisdom of the linear-time–branching-
time spectrum and to easily determine what equivalences fit their models.

1.1 Linear-Time–Branching-Time Spectroscopy

To illustrate the problem, let us look at an example that wewill be able to solve
via tool support at the end of the thesis in Section 8.1.2. It includes numerous
concepts we will define and discuss more deeply on our way there.
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2 To fit on the page, Pe is minimized by a behav-
ioral equivalence that will be important later
on: stability-respecting branching bisimilarity.

Example 1.1 (Verifying Peterson’s mutual exclusion). Many verification tasks
can be understood along the lines of “how equivalent” two models are. The
models can usually be expressed as labeled transition systems, that is, as
graphs where nodes represent program states and edges represent transitions
between them, labeled by actions.

Figure 1.2 replicates a standard example, known, for instance, from the
textbook Reactive systems (Aceto et al., 2007): The left-hand side gives a graph
specification of mutual exclusion Mx as two users A and B entering their
critical section ecA/ecB and leaving lcA/lcB before the other may enter. The
right-hand side shows the transition system of Peterson’s mutual exclusion
algorithm (1981) starting in Pe, with internal steps −→ due to the coordination
that needs to happen.2 For Pe to faithfully implement mutual exclusion, it
should behave somewhat similarly to Mx.

Pe

⋅ ⋅
⋅

⋅ ⋅
⋅

⋅

⋅ ⋅∘ ⋅ ⋅ ∘

∘ ∘∘ ∘

ecA ecB

ecA ecB

lcA

ecA ecB

lcB

lcA lcB

lcA lcB

Mx

∘ ∘
ecA ecB

lcA lcB

Figure 1.2: A specification of mutual exclusion Mx, and Peterson’s protocol
Pe, minimized with respect to stability-respecting branching bisimilarity.

In Section 8.1.2, we will see how the transitions of Pe derive from pseudocode
and formal model.

Semantics in concurrent models must treat nondeterminism and internal
steps in some way. As we will see throughout this thesis, setting the degree
to which nondeterminism counts induces equivalence notions with subtle dif-
ferences. In the example, Pe and Mx weakly simulate each other, intuitively
meaning that a tree of options passing over internal activity from one pro-
cess can be matched by a similar tree of the other. This implies that they
have the same weak traces, that is, matching paths. However, they are not
weakly bi-similar, whichwould require a higher degree of symmetry thanmu-
tual similarity, namely, matching absence of options. There are many more
such notions, which can be incomparable in how they relate processes. In our
example, one might wonder: Are there notions relating Pe and Mx besides
mutual weak similarity?



1.1. Linear-Time–Branching-Time Spectroscopy 5

3 This thesis often provides snippets for models
on equiv.io. You can examine and modify the
examplemodels by clicking on the links reading
Interactive model on equiv.io.

State of the art. For many of the existing behavioral preorders and equiva-
lences, there are various algorithms and implementations to decide whether
processes are equivalent (see Garavel & Lang, 2022 for a survey). So, it would
be an option to throw an array of algorithms on the transition systems of Ex-
ample 1.1. For example, let us pick out stable failures and contrasimilarity,
which are close to weak similarity in Figure 1.1. CAAL (Andersen, Andersen,
et al., 2015) could establish mutual weak similarity, but does not support the
other notions. mCRL2 (Bunte et al., 2019; Groote &Mousavi, 2014) would rule
out stable-failure equivalence. But for contrasimilarity, we would need to im-
plement our own solution because there is no tool supporting it. Combining
different tools and algorithms like this is tiresome and prone to subtle errors.
It would be desirable to treat the question in just one algorithm!

Our offer. This thesis describes how to decide all equivalences in one uniform
approach based on energy games, which is easily implemented in tools.

As we will discuss in more detail in Section 8.1.2, our accompanying tool
equiv.io answers the question which equivalences apply for Example 1.1 in a
small query. Here is an excerpt:

Interactive model on equiv.io.Pe = (A1 | B1 | TurnA | ReadyAf | ReadyBf)
\ {readyAf, readyAt, setReadyAf, setReadyAt, readyBf, readyBt,

setReadyBf, setReadyBt, turnA, turnB, setTurnA, setTurnB}
Mx = ecA.lcA.Mx + ecB.lcB.Mx

@compareSilent Pe, Mx

This query leads to the output in Figure 1.3,3 which is to be understood as an
interactive version of the linear-time–branching-time spectrum of Figure 1.1.
The big blue circle in Figure 1.3 indicates that weak simulation indeed is the
most specific equivalence to equate Pe and Mx. Lines mean that the notion
at the top implies the one below. Blue half-circles indicate preordering in
only one direction. For instance, Pe is preordered to Mx with respect to two
more specific notions, namely 𝜂-simulation and stable simulation (and notions
below). Intuitively, this means that Pe implements Mx more faithfully than
pure weak similarity would demand. Red triangles mark distinctions.

By running one simple algorithm, the tool decides twenty-six equivalence
(and preorder) problems on Pe and Mx (in about 150 ms on my laptop).

Spectroscopy analogy. How does the tool decide so many equivalences in
one shot? The key are vanGlabbeek’s “linear-time–branching-time spectrum”
papers on comparative concurrency semantics (1990, 1993). They treat a zoo
of distinct qualitative questions of the form “Are processes 𝑝 and 𝑞 equivalent
with respect to notion 𝑁?”, where 𝑁 would, for example, be trace or bisim-
ulation equivalence. The papers unveil an underlying structure where equiv-
alences can easily be compared with respect to their distinctive power. This
is analogous to the spectrum of light where seemingly qualitative properties

https://equiv.io
https://equiv.io
https://equiv.io/#code=
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weak-enabledness

weak-trace

weak-failure
stable-failureweak-readiness

stable-revivals
stable-readiness

stable-failure-trace
stable-ready-trace

s-impossible-future
weak-impossible-future

weak-possible-future

weak-simulation

eta-simulation

weak-ready-simulation

stable-simulation

s-ready-simulation2-nested-weak-simulation
contrasimulation

stable-bisimulation

weak-bisimulation

delay-bisimulation

sr-delay-bisimulation

eta-bisimulation

branching-bisimulation

sr-branching-bisimulation

Figure 1.3: Output of equiv.io about weak equivalences to relate Pe to Mx of Example 1.1. Where notions are
connected, the one at the top implies the one underneath.

(“The light is blue / green / red.”) happen to be quantitative (“The distribution
of wavelengths peaks at 460/550/630 nm.”).

For light (i.e. electromagnetic radiation), the mix of wavelengths can be
determined through a process called spectroscopy. So, we could reframe the
question behind this thesis also:

Idea 1: A Spectroscopy for the Spectra

If there are “linear-time–branching time spectra,” does this mean that
there also is some kind of “linear-time–branching-time spectroscopy”?

The difference that this thesis makes. We answer the spectroscopy question
positively, which is the key step to tackle our research question: One can com-
pute what mix of (in-)distinguishabilities exists between a pair of finite-state
processes, and this places the two on a spectrum of equivalences. We thus
turn a set of qualitative equivalence problems into one quantitative problem
of how equivalent two systems are. This amounts to an abstract form of sub-
traction between programs, determining what kinds of differences an outside
examiner might observe. Thereby, one algorithm works for all of a spectrum.

https://equiv.io
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Preliminaries Chapter 2

Behavior & equivalences
2.1 & 2.2

Modal logics
2.3

Games
2.4

Strong spectrum
& spectroscopy problem

Chapter 3

Approach: Equivalence
problems as energy games

Chapter 4

Energy games
4.1 & 4.3

Spectroscopy of
the strong spectrum

Chapter 5

Individual checkers
5.3Weak

spectrum
Chapter 6

Weak spectroscopy
Chapter 7

Figure 1.4: The theory stack of this thesis. Chapters and ideas build upon those
underneath.

1.2 This Thesis

At the core, this thesis presents an algorithm to decide all behavioral equiva-
lences at once for varying spectra of equivalence using energy games to limit
possible distinctions through attacker budgets. More precisely, we make the
following contributions, each coming with a “side quest:”

• Chapter 2 lays some foundations and makes precise how bisimulation
games relate to grammars of distinguishing formulas from Hennessy–
Milner modal logic.

– Main result: Attacker strategies in the bisimulation game GB cor-
respond to distinguishing formulas in a subsetO⌊B⌋ of modal logic
HML (Theorem 2.3).

– Side quest: Certifying algorithms to check equivalences.

• Chapter 3 shows how to understand the strong linear-time–branching-
time spectrum quantitatively and formalizes the spectroscopy problem.

– Main result: The spectroscopy problem (Problem 1) is PSPACE-
hard for the strong spectrum Nstrong.

– Side quest: Equivalence checking as subtraction.

• Chapter 4 introduces the approach of characterizing equivalence spectra
through energy games and how to decide such games.

– Main result: The preorder and equivalence problems in the P-easy
part of the strong spectrum Npeasy are characterized by an energy
game version of the bisimulation game GB (Theorem 4.1).
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– Side quest: Deciding Galois energy games (Problem 2).

• Chapter 5 applies the approach to decide the whole strong spectrum
through one game for linear-time–branching-time spectroscopy.

– Main result: The strong spectroscopy game G△ covers the strong
spectrum Nstrong (Theorem 5.1) in exponential time.

– Side quest: Deriving efficient individual equivalence checkers.

• Chapter 6 recharts the weak spectrum of equivalences accounting for
silent steps to fit our game approach.

– Main result: The Hennessy–Milner logic subset HMLSRBB charac-
terizes stability-respecting branching bisimilarity (Theorem 6.1),
and its sublogics describe the weak spectrum Nweak.

– Side quest: Case studies in concurrency theory research.

• Chapter 7 adapts the game for the weak spectrum of equivalences.

– Main result: The weak spectroscopy game G∇ characterizes the
weak spectrum Nweak (Theorem 7.1).

– Side quest: Isabelle/HOL formalization.

• Chapter 8 showcases four implementations to conveniently per-
form equivalence spectroscopies in web browsers and reports some
benchmarking results.

– Main result: Our approach is more general than what is usually
found in tools and can compete with algorithms for simulation-
like notions.

– Side quest: Analyzing Peterson’s mutual exclusion protocol.

Each chapter ends with a discussion of its position in the context of the thesis
and of related work. Chapter 9 recapitulates how the thesis ascends through
a hierarchy of game characterizations and considers the wider picture. Recur-
ring symbols can be looked up under Notation on page 187.

Figure 1.4 gives an overview of how parts of this thesis build upon each
other. An example of how to read the figure: Chapter 4 describes the approach
to frame equivalence problems as energy games. It builds on a part of the
modal characterization for the strong spectrum in Chapter 3 and on game
theory from Chapter 2, which is adapted through energy games.

Not this thesis. We limit ourselves to the relevant parts of the strong spec-
trum (van Glabbeek, 1990) and the weak spectrum (van Glabbeek, 1993). For
instance, this excludes questions around value-passing, open/late/early bisim-
ilarities, and barbed congruences on the 𝜋-calculus (cf. Sangiorgi, 1996). Also,
we do not consider timed or probabilistic equivalences (cf. Baier et al., 2020),
nor behavioral distances (Fahrenberg & Legay, 2014). Neither do we aim to
re-survey behavioral equivalences in encyclopedic detail, which means that
several notions will be covered without a detailed discussion of their features
and merits.
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1.3 Artifacts and Papers

This thesis ties together the work of several publications. It is written to be
understandable on its own. For details, we typically refer to the original publi-
cations or to other artifacts for implementation and machine-checked proofs.

Publications. The following four publications (with me as main author) fuel
the following chapters:

• “Deciding all behavioral equivalences at once: A game for linear-
time–branching-time spectroscopy” (LMCS 2022, with Nestmann &
Jansen) introduces the spectroscopy problem and the core idea to decide
the whole strong spectrum using games that search trees of possible
distinguishing formulas. (Conference version: TACAS 2021)

• “Process equivalence problems as energy games” (CAV 2023b) makes a
big technical leap by using energy games, which removes the necessity
for explicit formula construction. (Tech report: arXiv 2023c)

• “Characterizing contrasimilarity through games, modal logic, and com-
plexity” (Information & Computation 2024, withMontanari) closes gaps
in the weak spectrum of equivalences for complexity, games, and their
links to modal logics. (Isabelle/HOL theory: AFP 2023; Workshop ver-
sion: EXPRESS/SOS 2021)

• “One energy game for the spectrum between branching bisimilarity and
weak trace semantics” (EXPRESS/SOS 2024, with Jansen) adapts the
spectroscopy approach for the weak spectrum. (Journal version: Preprint
2025)

Prototype. The algorithms of this thesis have been validated through a Scala
prototype implementation. Throughout the thesis, many examples come with
listings of equiv.io input and a link to try it out in the browser. You have
already seen one such example for Peterson’s mutex in Section 1.1. Sec-
tion 8.1.1 explains the usage of equiv.io. The source is available openly on
https://github.com/benkeks/equivalence-fiddle.

Isabelle formalization. In order to relieve the document of technical proofs,
these are contained in machine-checkable Isabelle/HOL theories.

• “A weak spectroscopy game to characterize behavioral equiva-
lences” formalizes the core results of Chapter 6 and Chapter 7:
https://equivio.github.io/silent-step-spectroscopy. The theory (Barthel
et al., 2025) has been developed together with TU Berlin students
Barthel, Hübner, Lemke, Mattes, and Mollenkopf. Also, many the-
orems of earlier chapters can be understood to be supported by the
formalization.

• “Equivalence spectrum formalization” supplies proofs for Chapter 2 and
Chapter 3: https://benkeks.github.io/ltbt-spectroscopy-isabelle/.

https://equiv.io
https://equiv.io
https://github.com/benkeks/equivalence-fiddle
https://equivio.github.io/silent-step-spectroscopy
https://benkeks.github.io/ltbt-spectroscopy-isabelle/
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Student theses. Some parts of this thesis strongly rely on student work that
I have supervised, in particular, on the following theses:

• Trzeciakiewicz (2021): “Linear-time–branching-time spectroscopy as an
educational web browser game” provides a computer game version of
the spectroscopy procedure to be discussed in Section 8.2.1.

• Ozegowski (2023): “Integration eines generischen Äquivalenzprüfers in
CAAL” extends the Concurrency Workbench Aalborg Edition with a
spectroscopy feature, reported in Section 8.2.2, extended by Straßnick
& Ozegowski (2024).

• Mattes (2024): “Measuring expressive power of HML formulas in
Isabelle/HOL” proves the approach to modal characterization of
Section 3.2.

• Vogel (2024): “Accelerating process equivalence energy games using Web-
GPU,” topic of Section 8.2.3, allows massive parallelization of key parts
of our algorithm on the GPU.

• Lemke (2024): “A formal proof of decidability of multi-weighted declining
energy games” formalizes the Galois energy games of Section 4.3. Its
Isabelle theory is archived on https://github.com/crmrtz/galois-energy-
games.

Other publications. My prior publications are only indirectly connected to
this PhD thesis. Still, they lead me to topics and techniques:

• Bisping, Brodmann, Jungnickel, Rickmann, Seidler, Stüber, Wilhelm-
Weidner, Peters, Nestmann (ITP 2016): “Mechanical verification of a
constructive proof for FLP.”

• Bisping & Nestmann (TACAS 2019): “Computing Coupled Similarity.”
• Bisping, Nestmann, Peters (Acta Informatica 2020): “Coupled similarity:
The first 32 years.”

Other student theses. During this research project, I have also supervised
several other Bachelor theses, many of which played important roles in shap-
ing the research. Although most of them do not appear directly on the fol-
lowing pages, I want to acknowledge the students’ vital contributions to this
research.

• Peacock (2020): “Process equivalences as a video game.”
• Lê (2020): “Implementing coupled similarity as an automated checker for

mCRL2.”
• Wrusch (2020): “Ein Computerspiel zum Erlernen von Verhaltensäquiv-

alenzen.”
• Reichert (2020): “Visualising and model checking counterfactuals.”
• Wittig (2020): “Charting the jungle of process calculi encodings.”
• Bulik (2021): “Statically analysing inter-process communication in Elixir

programs.”

https://github.com/crmrtz/galois-energy-games
https://github.com/crmrtz/galois-energy-games
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• Montanari (2021): “Kontrasimulation als Spiel.”
• Pohlmann (2021): “Reducing strong reactive bisimilarity to strong bisim-

ilarity.”
• England (2021): “HML synthesis of distinguished processes.”
• Duong (2022): “Developing an educational tool for linear-time–bran-

ching-time spectroscopy.”
• Alshukairi (2022): “Automatisierte Reduktion von reaktiver zu starker

Bisimilarität.”
• Adler (2022): “Simulation fehlertoleranter Konsensalgorithmen in

Hash.ai.”
• Sandt (2022): “A video game about reactive bisimilarity.”
• Lönne (2023): “An educational computer game about counterfactual truth

conditions.”
• Hauschild (2023): “Nonlinear counterfactuals in Isabelle/HOL.”
• Stöcker (2024): “Higher-order diadic µ-calculus–An efficient framework

for checking process equivalences?”
• Kurzan (2024): “Implementierung eines Contrasimilarity-Checkers für

mCRL2.”

This thesis itself. This document itself is created using Quarto (2025).
Its HTML version is deployed to https://generalized-equivalence-checking.
equiv.io/. One can find its source on https://github.com/benkeks/generalized-
equivalence-checking/.

And of course, one can just continue reading it right here. In Chapter 2, we
will dive into the formal description of equivalence and difference in program
behavior, and start building a game framework that lets us solve our problem
of generalized equivalence checking in one shot.

https://generalized-equivalence-checking.equiv.io/
https://generalized-equivalence-checking.equiv.io/
https://github.com/benkeks/generalized-equivalence-checking/
https://github.com/benkeks/generalized-equivalence-checking/
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2 Preliminaries:
Communicating Systems
and Games

Related publications. This chapter is based on
my introductory lectures and Isabelle/HOL
theory on behavioral equivalences, given in
the Master course “Research at Work” at TU
Berlin in Winter 2023/24. We aim to be mostly
compatible with the textbook Reactive systems
(Aceto et al., 2007).

The core background of this thesis is the trinity of characterizations for behav-
ioral equivalences: relational, modal, and game-theoretic.

This chapter takes a tour into the field of formalisms used to model pro-
grams and communicating systems, which are accompanied by many notions
for behavioral equivalence and refinement to relate or distinguish their mod-
els. As core formalisms we will introduce transition systems and the Calculus
of Communicating Systems (CCS) in Section 2.1.

The tour is agnostic, building on the basic formalism of labeled transition
systems and standard equivalences such as trace equivalence and bisimilarity.
Simultaneously, the approach is opinionated, focusing on Milner’s tradition of
concurrency theory with a strong pull towards game characterizations.

Figure 2.1 shows the scaffold of this section along the trinity, instantiated
to the classic notion of bisimilarity:

• Section 2.2 introduces (among other notions) bisimilarity through its
relational characterization in terms of symmetric simulation relations.

• Section 2.3 treats the dual connection of bisimilarity and the distin-
guishing powers of a modal logic, known as the Hennessy–Milner theo-
rem.

• Section 2.4 shows that both, the relations to validate bisimilarity and
the modal formulas to falsify it, appear as certificates of strategies in
a reachability game where an attacker tries to tell states apart and a
defender tries to prevent this.

A reader familiar with the contents of Figure 2.1 might mostly skim through
this chapter of preliminaries (although they are quite exciting!). This chapter
aims to seed two core insights for the upcoming chapters:

Idea 2: It’s all a game!

Equivalence games are a versatile way to handle behavioral equiva-
lences and obtain decision procedures. The Hennessy–Milner theorem
appears as a shadow of the determinacy of the bisimulation reachability
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𝑝 ∼B 𝑞
𝑝 and 𝑞 are bisimilar

𝑝 ≁B 𝑞
𝑝 and 𝑞 are not bisimilar

∶⟺

Def. 2.7

⟺

There is bisimulation R
such that (𝑝, 𝑞) ∈ R

Some 𝜑 ∈ HML
distinguishes 𝑝 from 𝑞

⟺Stirling’s
characterization Thm. 2.2

⟺

Thm. 2.3

Defender wins bisimulation
game from [𝑝, 𝑞]

Attacker wins bisimulation
game from [𝑝, 𝑞]

XOR
Def. 2.7

XOR
Hennessy–Milner

Thm. 2.1

XOR
Determinacy
of games

Section 2.2

Section 2.3

Section 2.4

Figure 2.1: Core correlations for bisimilarity between relational definition, modal distinguishability, and equiv-
alence game.

4 But some are useful, as the saying goes.

game.

We will move towards motivating the games through logics.

Idea 3: Modal first!

Modal characterizations allow a uniform handling of the hierarchy of
equivalences. Productions in grammars of potential distinguishing for-
mulas translate to game rules for equivalence games.

Both points might seem non-standard to those more accustomed to relational
or denotational definitions of behavioral equivalences. To provide them with
a bridge, we will start with relational and denotational definitions—but once
we have crossed this bridge, we will stay in the realm of games and logics.

2.1 Behavior of Programs

Every computer scientist has some model in their head of what it is that their
algorithms and programs are doing. Usually these models are wrong,4 espe-
cially, once concurrency enters the picture. The area of formal methods tries to
make models sufficiently precise that one, at least, can say what went wrong.

2.1.1 Labeled Transition Systems

Labeled transition systems are the standard formalism to discretely express
the state space of programs, algorithms, and more. One can think of them as
nondeterministic finite automata without finiteness constraint.
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Figure 2.2: Tom Henzinger employing Exam-
ple 2.1 during CAV’23 to stress that “games are
everywhere.” (Incidentally, this chapter follows
a similar mission.)

Definition 2.1 (Transition systems). A transition system S = (P,Act, −→)
consists of

• P , a set of states,
• Act, a set of actions, and
• −→ ⊆ P × Act × P , a transition relation.

We use infix notation for arrows, that is, 𝑝 𝛼−→ 𝑝′ stands for (𝑝, 𝛼, 𝑝′) ∈ −→.
We write Der(𝑝, 𝛼) for the set of derivative states {𝑝′ ∣ 𝑝 𝛼−→ 𝑝′} and Ini(𝑝) for
the set of enabled actions {𝛼 ∣ ∃𝑝′. 𝑝 𝛼−→ 𝑝′}. We sometimes lift transitions to
sets 𝑃 , 𝑃 ′ ⊆ P with 𝑃 𝛼−→ 𝑃 ′ iff 𝑃 ′ = {𝑝′ ∈ P ∣ ∃𝑝 ∈ 𝑃 . 𝑝 𝛼−→ 𝑝′}.

There is a canonical example used to discuss equivalences within transition
systems, which we want to draw from. We will take the formulation that
Henzinger used at CAV’23 as seen in Figure 2.2.

Example 2.1 (A classic example). Consider the transition system
SPQ = ({P, pa, pb, p1, p2, Q, qab, q1, q2}, {a, b, 𝜏}, −→PQ) given by the
following graph:

P

pa pb

p1 p2

𝜏 𝜏

a b

Q

qab

q1 q2

𝜏

a b

Figure 2.3: Example system SPQ.

The program described by the transitions from P chooses nondeterministi-
cally during a 𝜏 -step between two options and then offers only either a or b.
The program of Q, on the other hand, performs a 𝜏 -step and then offers the
choice between options a and b to the environment.

There are two things one might wonder about Example 2.1:

1. Should one care about nondeterminism in programs? Section 2.1.2
shows how nondeterminism arises naturally in concurrent programs.
And, of course, many specifications leave undefind behavior.

2. Should one consider P and Q equivalent? This heavily depends. Sec-
tion 2.2 will introduce a notion of equivalence under which the two are
equivalent and one under which they differ.

Remark 2.1 (A note on 𝜏 ). The action 𝜏 (the Greek letter “tau”) will stand for
internal behavior in later chapters and receive special treatment in Chapter 6.
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5 To those not familiar with CCS:The following
exposition of CCS is quite condensed. Gentler
introduction can be found in textbooks likeMil-
ner (1989) or Aceto et al. (2007) and in the inter-
active learning experience https://book.pseuco.
com/.
6 To those familiar with CCS dialects: For the
examples of the thesis, a simple CCS variant
without value passing and relabeling suffices.

Figure 2.4: Scenario of two philosophers need-
ing a (second) fork to eat pasta.

PA

a

0

fork

a

Figure 2.5: Philosopher PA, on their own.
7 The philosopher meme is due to Dijkstra and
Hoare (1985). Of course, you can just as well
read the examples to be about computer pro-
grams that race for resources.

For the scope of this chapter and the following three, 𝜏 is an action like every
other.

Generally, this thesis aims to be consistent with notation and naming in
surrounding literature. For the internal action, the whole field has converged
to 𝜏 in italics—so, we will run with this. Otherwise, we follow the convention
to write literals and constant names in sans-serif and variables in italics.

2.1.2 Calculus of Communicating Systems

To talk about programs in this thesis, we use Milner’s (1980) Calculus of Com-
municating Systems (CCS), which—together with other great contributions—
earned him the Turing award. It is a tiny concurrent programming language
that fits in your pocket, and can be properly described mathematically!5

Definition 2.2 (Syntax of CCS). Let C be a set of channel names, and X a set
of process names. Then, CCS is the set of processes given by the following
grammar:6

𝑃 ∶∶= 𝑐.𝑃 with 𝑐 ∈ C “input action prefix”
𝑐.𝑃 with 𝑐 ∈ C “output action prefix”
𝜏 .𝑃 “internal action”
0 “null process”
𝑋 with 𝑋 ∈ X “recursion”
𝑃 + 𝑃 “choice”
𝑃 ∣ 𝑃 “parallel composition”
𝑃 ∖ 𝐴 with 𝐴 ⊆ C “restriction”

Intuitively, input action 𝑐 represents receiving and output action 𝑐 expresses
sending on channel 𝑐 ∈ C. A pair of input and output can “react” in a com-
munication situation and only become internal activity 𝜏 in the view of the
environment. Taken together, CCS processes exhibit the actions ActCCS ≔
C ∪ {𝑐 ∣ 𝑐 ∈ C} ∪ {𝜏}.

Each part of the syntax tree must end in a 0-process or recursion. For
brevity, we usually drop a terminal 0 when writing terms, e.g., just writing ac
for ac.0.

We place parenthesis (…) in terms where the syntax trees are otherwise
ambiguous, but understand the choice operator + and the parallel operator ∣
to be associative. This conventionmeans that (𝑃1+𝑃2)+𝑃3 and 𝑃1+(𝑃2+𝑃3)
are representations of the same term in our view.

Example 2.2 (Concurrent philosophers). Following tradition, we will express
our examples in terms of philosophers who need forks to eat spaghetti.7 Con-
sider two philosophers PA and PB (from Figure 2.4) who want to grab a re-
source fork, in order to eat, which we model as receiving communication. We
express PA eating with a and PB eating with b. The philosopher processes

https://book.pseuco.com/
https://book.pseuco.com/
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8 Such rules are read like this: “If we can de-
rive the facts above the line, we may infer the
relation below.” Rule Pre, having no premises,
serves as the only axiom of this inference sys-
tem. Figure 2.6 shows how to stack such rules to
infer that a certain step is possible for a process.

read:
PA ≔ fork.a.0

PB ≔ fork.b.0

A transition system representation of PA’s behavior can be seen in Figure 2.5.
Process P captures the whole scenario where the two philosophers compete
for the fork using communication:

P ≔ (fork.0 ∣ PA ∣ PB) ∖ {fork}

The restriction … ∖ {fork} expresses that the fork-channel can only be used
for communication within the system.

As the fork-message can be consumed by just one of the two philoso-
phers, process P expresses exactly the program behavior seen in state P of
Example 2.1. A process matching Q will follow in Example 2.3.

The formal relationship between process terms of CCS and their transition
system is established by the following semantics.

Definition 2.3 (CCS semantics). Given an assignment of names to processes,
V ∶ X → CCS, the operational semantics −→CCS ⊆ CCS × ActCCS × CCS is
defined inductively by the inference rules:

Pre 𝛼.𝑃 𝛼−→CCS 𝑃 Rec
𝑃 𝛼−→CCS 𝑃 ′ V(𝑋) = 𝑃

𝑋 𝛼−→CCS 𝑃 ′

Choice1
𝑃1

𝛼−→CCS 𝑃 ′
1

𝑃1 + 𝑃2
𝛼−→CCS 𝑃 ′

1
Choice2

𝑃2
𝛼−→CCS 𝑃 ′

2
𝑃1 + 𝑃2

𝛼−→CCS 𝑃 ′
2

Par1
𝑃1

𝛼−→CCS 𝑃 ′
1

𝑃1 ∣ 𝑃2
𝛼−→CCS 𝑃 ′

1 ∣ 𝑃2
Par2

𝑃2
𝛼−→CCS 𝑃 ′

2
𝑃1 ∣ 𝑃2

𝛼−→CCS 𝑃1 ∣ 𝑃 ′
2

Com1
𝑃1

𝑐−→CCS 𝑃 ′
1 𝑃2

𝑐−→CCS 𝑃 ′
2

𝑃1 ∣ 𝑃2
𝜏−→CCS 𝑃 ′

1 ∣ 𝑃 ′
2

Com2
𝑃1

𝑐−→CCS 𝑃 ′
1 𝑃2

𝑐−→CCS 𝑃 ′
2

𝑃1 ∣ 𝑃2
𝜏−→CCS 𝑃 ′

1 ∣ 𝑃 ′
2

Res
𝑃 𝛼−→CCS 𝑃 ′ ∄𝑐 ∈ 𝐴. 𝛼 = 𝑐 ∨ 𝛼 = 𝑐

𝑃 ∖ 𝐴 𝛼−→CCS 𝑃 ′ ∖ 𝐴
A process 𝑃 ∈ CCS now denotes a node within the labeled transition system
(CCS, ActCCS, −→CCS).8

So, when we were writing “PA ≔ fork.a.0” above, this was actually to claim
that we are talking about a CCS system where the value of V for the process
name PA ∈ X is defined by V(PA) ≔ fork.a.0. By the semantics, this also
leads to the existence of a state PA in the CCS transition system, and usually
that is the entity we are interested in when defining a process.

Feel free to go ahead and check that the transitions of Example 2.1 in-
deed match those that Definition 2.3 prescribes for P of Example 2.2! (For
readability, Example 2.1, has shorter state names, however.) For instance, the
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Rec
Res
Com2

Pre
fork fork−−→CCS 0

Par1

Rec

Pre
fork.a fork−−→CCS a V(PA) = fork.a

PA
fork−−→CCS a

PA ∣ PB
fork−−→CCS a ∣ PB

fork ∣ PA ∣ PB
𝜏−→CCS 0 ∣ a ∣ PB 𝜏 ∉ {fork}

(fork ∣ PA ∣ PB) ∖ {fork} 𝜏−→CCS (0 ∣ a ∣ PB) ∖ {fork} V(P) = (fork ∣ PA ∣ PB) ∖ {fork}
P 𝜏−→CCS (0 ∣ a ∣ PB) ∖ {fork}

Figure 2.6: Deriving CCS transitions due to communication.

transition P 𝜏−→ pa in the CCS system of Example 2.1 would be justified by the
derivation in Figure 2.6 with pa = (0 ∣ a ∣ PB) ∖ {fork}.

Therefore, after one step from P, the (internal) fork has been consumed,
and only one philosopher may eat. From the outside, this appears as nonde-
terminism of the system.

Nondeterminism as in P of Example 2.1 can be understood as a natu-
ral phenomenon in models with concurrency. The model leaves unspecified
which of two processes will consume an internal resource and, to the out-
sider, it is transparent which one took the resource until they communicate.
There are other ways how nondeterminism plays a crucial role in models, for
instance, as consequence of abstraction or of parts that are left open in speci-
fications.

The second process Q of Example 2.1 can be understood as a deterministic
sibling of P.

Example 2.3 (Deterministic philosophers). A process matching the transi-
tions from Q in Example 2.1 would be the following, where the philosophers
take the fork as a team and then let the environment choose who of them eats:

Q ≔ (fork.0 ∣ fork.(a.0 + b.0)) ∖ {fork}.

But are P and Q equivalent?

2.2 Behavioral Equivalences

A behavioral equivalence formally defines when to consider two processes
(or states, or programs) as equivalent. Evidently, there are different ways of
choosing such a notion of equivalence. Also, sometimes we are interested in a
behavioral preorder, for instance, as a way of saying that a program does “less
than” what some specification allows. Such a relationship is often also called
refinement or inclusion, but we will go with preorder.
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9 We denote the empty word by ().
10 abbreviation Labeled_Transition
_Systems.lts.traces

11 abbreviation Strong_Equivalences.lts
.trace_equivalent
12 definition Strong_Equivalences.lts.trace
_preordered

13 lemma Strong_Equivalences.lts.trace
_preorder_transitive
14 lemma Strong_Equivalences.lts.trace
_equivalence_equiv
15 This thesis states many facts, only linking to
their proof. In this case, proofs can be found
in the Isabelle/HOL formalization, indicated by

.

This section quickly introduces the most common representatives of be-
havioral equivalences: Trace equivalence (and preorder), simulation equiva-
lence (and preorder), and bisimilarity. We will then observe that the notions
themselves can be compared in a hierarchy of equivalences.

2.2.1 Trace Equivalence

Every computer science curriculum features automata and their languages
sometime at the beginning. Accordingly, comparing two programs in terms of
the sequences of input/output events they might expose is a natural starting
point to talk about behavioral equivalences. Such sequences of actions are
referred to as traces.

Definition 2.4 (Traces). The set of traces of a state Traces(𝑝) ⊆ Act∗ is in-
ductively defined as

• () ∈ Traces(𝑝),9
• 𝛼𝑤⃗ ∈ Traces(𝑝) if there is 𝑝′ with 𝑝 𝛼−→ 𝑝′ and 𝑤⃗ ∈ Traces(𝑝′).10

Definition 2.5 (Trace equivalence). Two states 𝑝 and 𝑞 are considered trace-
equivalent, written 𝑝 ∼T 𝑞, if Traces(𝑝) = Traces(𝑞).11

States are trace-preordered, 𝑝 ⪯T 𝑞, if Traces(𝑝) ⊆ Traces(𝑞).12

Example 2.4. The traces for the processes of Example 2.1 would be
Traces(P) = {(), 𝜏 , 𝜏a, 𝜏b} = Traces(Q). Consequently, P and Q are
trace-equivalent, P ∼T Q.

As Traces(pa) = {(), a} ⊆ {(), a, b} = Traces(qab), pa is trace-
preordered to qab, pa ⪯T qab. This ordering is strict, that is, qab ⪯̸T pa, due to
b ∈ Traces(qab) but b ∉ Traces(pa). We could say that trace b constitutes a
difference between qab and pa.

Proposition 2.1. Trace preorder ⪯T is indeed a preorder (i.e., transitive and
reflexive)13 and trace equivalence ∼T is indeed an equivalence relation14 (i.e.,
transitive, reflexive, and moreover symmetric).15

Trace equivalence (and preorder) give straightforward denotational semantics
to programs: The sets of traces they might expose. For many formal lan-
guages, these mathematical objects can be constructed directly from the ex-
pressions of the language. With the idea that the program text “denotes” its
possible executions, the set of traces is called a “denotation” in this context.
CCS, as we use it, follows another approach to semantics, namely the one of
“operational semantics,” where the meaning of a program is in how it might
interact.

There are several reasons why computer scientists did not content them-
selves with trace equivalence when studying interactive systems. The core
argument is that, in this context, one usually does not want to consider pro-
cesses like P and Q to be equivalent: The two might interact differently with
an environment.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Labeled_Transition_Systems.html#Labeled_Transition_Systems.lts.traces%7Cconst
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https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.trace_equivalence_equiv%7Cfact
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16 Traditionally, this feature of
trace equivalence is often framed
in terms of vending machines. On
https://book.pseuco.com/#/interactive/trace-
equivalent-vending-machines, you can play
through a comparable scenario of ordering
drinks where you are the environment.

17 definition Strong_Equivalences.lts
.simulation

18 definition Strong_Equivalences.lts
.simulated_by
19 abbreviation Strong_Equivalences.lts
.similar
20 definition Strong_Equivalences.lts
.bisimilar
21 Other authors use a weaker definition,
namely, that R is a bisimulation if R and R−1

are simulations. Both definitions lead to the
characterization of the same notion of bisimi-
larity.

Example 2.5 (Live lecture). Consider a context in which A actually does not
want to eat and the event of B eating is followed by B giving a live lecture:

(… ∣ b.lecture.0) ∖ {a, b}

If we insert Q for the “…” in this context, the choice after the collective fork-
acquisition is resolved to the B-path. So the overall system chooses for B to
eat, and the lecture happens:

(Q ∣ b.lecture.0) ∖ {a, b} 𝜏−→ ⋅ 𝜏−→ ⋅ lecture−−−→ (0 ∣ 0) ∖ {a, b}

With P, an analogous path is possible. But there is, moreover, a possibility of
A obtaining the fork, which prevents B from eating. There, the system can
end up deadlocked with no lecture:

(P ∣ b.lecture.0) ∖ {a, b} 𝜏−→ ((0 ∣ a ∣ PB) ∖ {fork} ∣ b.lecture.0) ∖ {a, b} ↛

So, if B’s teaching actually happening matters to us, we might say that sce-
nario P and Q are not quite equivalent.16

Computer scientists might not all care about philosophy lectures. But they
care about the liveness of interactive programs. Therefore, they have invented
many program equivalences that pay more attention to possibilities coming
and going. The most prominent ones are the topic of the next subsection.

2.2.2 Similarity and Bisimilarity

The other big approach to behavioral equivalence of programs is the one of
relating parts of their state spaces to one-another. The idea here is to identify
which states of one program can be used to simulate the behavior of the other.

Definition 2.6 (Simulation). A relation on states, R ⊆ P × P , is called a
simulation if, for each (𝑝, 𝑞) ∈ R and 𝛼 ∈ Act with 𝑝 𝑎−→ 𝑝′ there is a 𝑞′ with
𝑞 𝛼−→ 𝑞′ and (𝑝′, 𝑞′) ∈ R.17

Definition 2.7 ((Bi-)similarity). Simulation preorder, simulation equivalence
and bisimilarity are defined as follows:

• 𝑝 is simulated by 𝑞, 𝑝 ⪯S 𝑞, iff there is a simulationRwith (𝑝, 𝑞) ∈ R.18
• 𝑝 is similar to 𝑞, 𝑝 ∼S 𝑞, iff 𝑝 ⪯S 𝑞 and 𝑞 ⪯S 𝑝.19
• 𝑝 is bisimilar to 𝑞, 𝑝 ∼B 𝑞, iff there is a symmetric simulationR (i.e.R =
R−1) with (𝑝, 𝑞) ∈ R.20

We also call a symmetric simulation bisimulation for short.21 Canceled sym-
bols of relations refer to their negations, for instance, 𝑝 ⪯̸S 𝑞 iff there is no
simulation R with (𝑝, 𝑞) ∈ R.

Example 2.6 (Philosophical simulations). The following relations are simula-
tions on the system of Example 2.1:

https://book.pseuco.com/#/interactive/trace-equivalent-vending-machines
https://book.pseuco.com/#/interactive/trace-equivalent-vending-machines
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22 lemma Strong_Equivalences.lts
.simulation_preorder_transitive
23 lemma Strong_Equivalences.lts
.bisimilarity_equiv

Graph isomorphism

Bisimilarity

Similarity

Trace equivalence

Figure 2.7: Core hierarchy of equivalences.
(Arrows mean implication.)
24 lemma Strong_Equivalences.lts.bisim
_bisim
25 lemma Strong_Equivalences.lts.bisim
_bisim
26 lemma Strong_Equivalences.lts.sim
_implies_trace_preord
27 lemma Strong_Equivalences.lts.sim_eq
_implies_trace_eq

T

tab

t1 t2

𝜏 𝜏

a b

Figure 2.8: Example with new deadlock.

• the empty relation R∅ ≔ ∅;
• the identity relationRid ≔ id{P,pa,pb,p1,p2,Q,qab,q1,q2} = {(P, P), (pa, pa),

(pb, pb), (p1, p1), (p2, p2), (Q, Q), (qab, qab), (q1, q1), (q2, q2)};
• the universal relation between all terminal states
Rterm ≔ {p1, p2, q1, q2} × {p1, p2, q1, q2},

• more generally, the relation from terminal states to all other states:
Rup ≔ {p1, p2, q1, q2} × P ;

• a minimal simulation for P and Q:
RPQ ≔ {(P, Q), (pa, qab), (pb, qab), (p1, q1), (p2, q2)};

• and the combination of the above Rbig ≔ Rid ∪ Rterm ∪ Rup ∪ RPQ.

The simulation RPQ shows that P ⪯S Q.
However, there is no simulation that preorders Q to P, as there is no way

to simulate the transition Q 𝜏−→ qab from P for lack of a successor that allows
a and b as does qab. (In Section 2.3, we will discuss how to capture such
differences more formally.)

Thus, Q ⪯̸S P, and P ≁S Q. Moreover, there cannot be a symmetric
simulation, P ≁B Q.

Proposition 2.2. The simulation preorder ⪯S is indeed a preorder22, and ∼S and
∼B are equivalences.23

Example 2.6 shows that similarity and bisimilarity do not imply trace equiva-
lence. Still, the notions are connected.

2.2.3 Equivalence Hierarchies

Bisimilarity, similarity and trace equivalence form a small hierarchy of equiv-
alences in the sense that they imply one-another in one direction, but not in
the other. Let us quickly make this formal:

Lemma 2.1. The relation ∼B is itself a symmetric simulation.24

Corollary 2.1. If 𝑝 ∼B 𝑞, then 𝑝 ∼S 𝑞.25

Lemma 2.2. If 𝑝 ⪯S 𝑞, then 𝑝 ⪯T 𝑞.26 (Consequently, 𝑝 ∼S 𝑞 also implies
𝑝 ∼T 𝑞.27)

We also have seen with Example 2.6 that this hierarchy of implications (vi-
sualized in Figure 2.7) is strict between trace and simulation preorder in the
sense that there exist 𝑝, 𝑞 with 𝑝 ⪯T 𝑞 but not 𝑝 ⪯S 𝑞. The hierarchy also is
strict between similarity and bisimilarity as the following example shows.

Example 2.7 (Trolled philosophers). Let us extend Q of Example 2.3 to include
a troll process (highlighted in blue) that might consume the fork and then do
nothing:

T ≔ (fork ∣ fork ∣ fork.(a + b)) ∖ {fork}.
This adds another deadlock state to the transition system, seen in Figure 2.8.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.simulation_preorder_transitive%7Cfact
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28 definition Strong_Equivalences.lts
.isomorphism
29 definition Strong_Equivalences.lts.is
_isomorphic_to

peven

podd

𝜏 𝜏

Figure 2.9: Transition system with an isomor-
phic cycle.
30 lemma Strong_Equivalences.lts.iso
_implies_bisim

With respect to similarity, this change is invisible, that is, Q ∼S T. (For-
mal argument: The relation {(Q, T), (T, Q), (qab, tab), (tab, qab), ( , qab)} ∪
{q1, q2, t1, t2, } × {q1, q2, t1, t2, } is a simulation.)

However, to bisimilarity, T 𝜏−→ constitutes a difference. There cannot
be a symmetric simulation handling this transition as Q has no deadlocked
successors. Thus Q ≁B T.

The equivalences we have discussed so far could also be understood as ab-
stractions of an even finer equivalence, namely graph isomorphism:

Definition 2.8 (Graph isomorphism). A bijective function 𝑓 ∶ P → P is called
a graph isomorphism on a transition system if, for all 𝑝, 𝑝′, 𝛼, the transition
𝑝 𝛼−→ 𝑝′ exists if and only if the transition 𝑓(𝑝) 𝛼−→ 𝑓(𝑝′) exists.28

Two states 𝑝 and 𝑞 are considered graph-isomorphism-equivalent, 𝑝 ∼ISO 𝑞,
iff there is a graph isomorphism 𝑓 with 𝑓(𝑝) = 𝑞.29

Example 2.8. Consider the transition system in Figure 2.9. peven ∼ISO podd
because 𝑓 ≔ {peven ↦ podd, podd ↦ peven} is a graph isomorphism.

Lemma 2.3. The relation ∼ISO is itself a symmetric simulation and thus 𝑝 ∼ISO 𝑞
implies 𝑝 ∼B 𝑞.30

Once again, the hierarchy is strict because of bisimilarity being less restricted
in the matching of equivalent states.

Example 2.9 (Graph isomorphism counts too much). Consider the processes
P1 ≔ (fork ∣ fork) ∖ {fork} and P2 ≔ (fork ∣ fork ∣ fork) ∖ {fork}. P1
can transition to (0 ∣ 0) ∖ {fork}, while P2 has two options, namely (0 ∣ 0 ∣
fork) ∖ {fork} and (0 ∣ fork ∣ 0) ∖ {fork}. All three reachable processes are
deadlocks and thus isomorphic. But P1 ≁ISO P2 because no bijection can
connect the one successor of P1 and the two of P2. However, P1 ∼B P2, as
bisimilarity is more relaxed.

Graph isomorphism is the strongest equivalence, we have discussed so far.
But stronger needs not be better.

2.2.4 Congruences

One of the prime quality criteria for behavioral equivalences is whether they
form congruences with respect to fitting semantics or other important trans-
formations. A congruence relates mathematical objects that can stand in for
one-another in certain contexts, which, for instance, allows term rewriting.
The concept is closely linked to another core notion of mathematics: mono-
tonicity.

Definition 2.9 (Monotonicity and congruence). An 𝑛-ary function 𝑓 ∶ 𝐵1 ×
⋯×𝐵𝑛 → 𝐶 is calledmonotonicwith respect to a family of preorders (𝐵𝑘, ≤𝑘)
and (𝐶, ≤) iff, for all 𝑏 ∈ 𝐵1 × ⋯ × 𝐵𝑛 and 𝑏′ ∈ 𝐵1 × ⋯ × 𝐵𝑛, it is the
case that 𝑏𝑘 ≤𝑘 𝑏′

𝑘 for all 𝑘 ≤ 𝑛 implies that 𝑓(𝑏) ≤ 𝑓(𝑏′). We will usually

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.isomorphism%7Cconst
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https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Strong_Equivalences.html#Strong_Equivalences.lts.is_isomorphic_to%7Cconst
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31 For a generic proof of the congruence proper-
ties of trace equivalence, bisimilarity, and most
other notions of the equivalence spectrum, see
Gazda et al. (2020).

encounter settings where all components use the same order (𝐵1, ≤1) = ⋯ =
(𝐵𝑛, ≤𝑛) = (𝐶, ≤).

The relation ≤ is then referred to as a precongruence for 𝑓 . If ≤ moreover
is symmetric (and thus an equivalence relation), then ≤ is called a congruence
for 𝑓 .

Example 2.10 (Parity as congruence). As a standard example for a congru-
ence, consider the equivalence relation of equally odd numbers:

∼odd ≔ {(𝑚, 𝑛) ∈ ℕ × ℕ ∣ 𝑚 mod 2 = 𝑛 mod 2}.

For instance, 1 ∼odd 3 and 0 ∼odd 42, but not 42 ∼odd 23.
∼odd is a congruence for addition and multiplication. For instance, the

sum of two odd numberswill always be even; the product of two odd numbers,
will always be odd.

But ∼odd is no congruence for integer division. For instance, 2 ∼odd 4,
but 2/2 = 1 ≁odd 2 = 4/2.

Proposition 2.3. Trace equivalence and bisimilarity on the CCS transition sys-
tem (Definition 2.3) are congruences for the operators of CCS (Definition 2.2).31

The nice thing about congruences is that we can use them to calculate with
terms, as is common in mathematics.

Graph isomorphism fails to be a congruence for CCS operators. For in-
stance, consider a.(0 ∣ 0) ∼ISO a.0. But if one inserts the two terms in a choice
context, the results differ with respect to isomorphism: a.0 + a.(0 ∣ 0) ≁ISO
a.0 + a.0 ∼ISO a.0.

By now, we have encountered some behavioral equivalences. Both, bisim-
ilarity and trace equivalencemake for fine congruences that allow calculations
on process-algebraic expressions of CCS. Which one to choose? That there is
no definitive answer is a root cause of this thesis.
Remark 2.2 (Origins of linear time and branching time). This thesis is a con-
sequence of the classic idea that behavioral equivalences form a spectrum be-
tween linear-time notions and branching-time notions. This hierarchy cor-
responds to “how much” calculation is allowed on algebraic expressions of
processes.

Bisimilarity is the prototypical branching-time equivalence: every deci-
sion during execution counts. Trace equivalence is the prototypical linear-
time notion: only sequences of actions count. Therefore, more can be seen as
equivalent than in bisimilarity.

In the concurrency theory community, two prototypical process algebras
stand for this spread: CCS for bisimilarity and branching time, and CSP
for trace equivalence and linear-time. CSP (“Communicating Sequential
Processes”) is due to Hoare, another Turing award winner.

Hoare (1985, Section 7.4.1) summarizes the opposing design philosophies
between CCS and CSP as follows:
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are assembled by Frutos Escrig et al. (2013), in-
cidentally also quoting from Hoare (1985).
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Figure 2.10: Minimized version of Figure 2.8.

[…] CCS is intended to serve as a framework for a family of mod-
els, each of which may make more identifications than CCS but
cannot make less. To avoid restricting the range of models, CCS
makes only those identifications which seem absolutely essential.
In the mathematical model of [CSP] we have pursued exactly the
opposite goal—we have made as many identifications as possible,
preserving only the most essential distinctions. We have there-
fore a far richer set of algebraic laws.

The first comprehensive study on the correspondence between the hierarchy
of equivalences and algebraic laws has been dubbed “linear-time–branching-
time spectrum” by van Glabbeek (1990).32

Historically, therefore, this thesis originates from the tension between the
works of two Turing award winners: Milner’s CCS and Hoare’s CSP. Or, as
Hoare (2006) puts it: “It seems that CCS and CSP occupy extreme ends of
almost every spectrum.”

But do not worry—although our research question is a consequence of the
possibility to come up with various process algebras, this thesis will stick to
only one, CCS.

2.2.5 Quotient Systems and Minimizations

One of the prime applications of behavioral equivalences is to battle the state
space explosion problem: The transition systems of parallel processes quickly
grow in size, usually exponentially with regard to the number of communi-
cation participants. But many of the states tend to be equivalent in behavior,
and can be treated as one with their equals. Such minimization enables the
handling of vastly bigger input models.

Example 2.11 (Trolled philosophers, minimized). In Example 2.7 of “trolled
philosophers,” all terminal states are bisimilar, t1 ∼B t2 ∼B . We can thus
merge them into one state m as depicted in Figure 2.10, without affecting
the behavioral properties of the other states with respect to bisimilarity, that
is, tab ∼B tm

ab and T ∼B Tm.

Definition 2.10 (Quotient systems). Given an equivalence relation ∼ on
states, and a transition system S = (P,Act, −→), each equivalence class for
𝑝 ∈ P is defined [𝑝]∼ ≔ {𝑝′ ∈ P ∣ 𝑝 ∼ 𝑝′}.

The quotient system is defined as S/∼ ≔ (P/∼,Act, −→∼), where P/∼ is
the set of equivalence classes {[𝑝]∼ ∣ 𝑝 ∈ P}, and

𝑃 𝛼−→∼ 𝑃 ′ iff there are 𝑝 ∈ 𝑃 and 𝑝′ ∈ 𝑃 ′ such that 𝑝 𝛼−→ 𝑝′.

Proposition 2.4. On the combined system of S and S/∼S
B , states and their de-

rived class are bisimilar, 𝑝 ∼B [𝑝]∼S
B
.
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The same reasoning does not apply to graph isomorphism: In Example 2.11,
the terminal states might be graph-isomorphic, but merging them changes the
number of states and thus prevents isomorphism between T and Tm.

Together with the issue of congruence, we have now seen two reasons
why graph isomorphism does not allow the kind of handling we hope for in
behavioral equivalences. Thus, the following will focus on equivalences of
bisimilarity and below. The next section will revisit a deeper, philosophical
reason why bisimilarity is a reasonable limit of the properties one might care
about in the comparison of processes.

2.3 Modal Logics

Modal logics are logics in which one can formalize how facts in one possible
world relate to other possible worlds. In the computer science interpretation,
the possible worlds are program states, and typical statements have the form:
“If 𝑋 happens during the execution, then 𝑌 will happen in the next step.”

Each modal logic naturally characterizes a behavioral equivalence. In
this section, we show how such characterization works and argue that, for
our purposes of comparative semantics, modal characterizations are a superb
medium. In the next chapter, the equivalence hierarchy will turn out to be a
hierarchy of modal sublogics.

2.3.1 Hennessy–Milner Logic to Express Observations

Hennessy & Milner (1980) introduce the modal logic that is now commonly
calledHennessy–Milner logic (HML) as a “little language for talking about pro-
grams.” The idea is that HML formulas express “experiments” or “tests” that
an observer performs interacting with a program.

Definition 2.11 (Hennessy–Milner logic). Formulas of Hennessy–Milner logic
HML are given by the grammar:33

𝜑 ∶∶= ⟨𝛼⟩𝜑 with 𝛼 ∈ Act “observation”
∣ ⋀𝑖∈𝐼 𝜑𝑖 with index set 𝐼 “conjunction”
∣ ¬𝜑 “negation”

We also write conjunctions as sets ⋀{𝜑1, 𝜑2…}. The empty conjunction ⋀∅
is denoted by ⊤ and serves as the nil-element of HML syntax trees. We also
usually omit them when writing down formulas, e.g., shortening ⟨a⟩⟨b⟩⊤ to
⟨a⟩⟨b⟩, which says that one may observe a and then b.

We will assume a form of associativity through the convention that con-
junctions are flat in the sense that they do not immediately contain other con-
junctions. Accordingly, we consider ⋀{⟨a⟩, ⋀{⟨b⟩}} and ⋀{⟨a⟩, ⋀{⟨b⟩}, ⊤}
just as different representatives of the flattened formula ⋀{⟨a⟩, ⟨b⟩}, stating
that one may observe a and one may observe b.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Hennessy_Milner_Logic.html#Hennessy_Milner_Logic.hml_formula%7Ctype
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Hennessy_Milner_Logic.html#Hennessy_Milner_Logic.hml_formula%7Ctype


26 Chapter 2. Preliminaries: Communicating Systems and Games

34 primrec Hennessy_Milner_Logic.lts
.satisfies

35 abbreviation LTS_Semantics.lts
.distinguishes
36 definition LTS_Semantics.lts.preordered
37 definition LTS_Semantics.lts.equivalent

38 lemma LTS_Semantics.lts.equivalent
_equiv

39 lemma HML_Spectrum.lts.hml_equiv
_sim

40 lemma HML_Spectrum.lts.hml_bisim
_invariant

We do not restrict the size of index sets in conjunctions. In particular,
infinitary conjunctions are allowed, as we will discuss in Remark 2.3.

The intuition behind HML is that it describes what sequences of behavior
one may or may not observe of a system. Observations ⟨𝛼⟩… are used to build
up possible action sequences; conjunctions ⋀{…} capture branching points
in decision trees; and negations ¬… describe impossibilities.

Definition 2.12 (HML semantics). Given a transition system (P,Act, −→), the
semantics of HML J⋅K ∶ HML → 2P is defined recursively by:34

J⟨𝛼⟩𝜑K ≔ {𝑝 ∣ ∃𝑝′ ∈ J𝜑K. 𝑝 𝛼−→ 𝑝′}J⋀𝑖∈𝐼 𝜑𝑖K ≔ ⋂𝑖∈𝐼J𝜑𝑖KJ¬𝜑K ≔ P ∖ J𝜑K
Example 2.12. Let us consider some observations on the system of Exam-
ple 2.1.

• J⟨𝜏⟩⟨a⟩K = {P, Q} as both, P and Q, expose the trace 𝜏a,
• Q ∈ J⟨𝜏⟩ ⋀{⟨a⟩, ⟨b⟩}K, butP ∉ J⟨𝜏⟩ ⋀{⟨a⟩, ⟨b⟩}K asQ leaves the choice
between a and b to the environment.

• P ∈ J⟨𝜏⟩¬⟨a⟩K, but Q ∉ J⟨𝜏⟩¬⟨a⟩K as P can internally decide against a.

2.3.2 Characterizing Bisimilarity via HML

We can now add the middle layer of our overview graphic in Figure 2.1: That
two states are bisimilar precisely if they cannot be told apart using HML for-
mulas.

Definition 2.13 (Distinctions and equivalences). We say that formula 𝜑 ∈
HML distinguishes state 𝑝 from state 𝑞 if 𝑝 ∈ J𝜑K but 𝑞 ∉ J𝜑K.35

We say a sublogic O ⊆ HML preorders state 𝑝 to 𝑞, 𝑝 ⪯O 𝑞, if no 𝜑 ∈ O
distinguishes 𝑝 from 𝑞.36 If the preordering goes in both directions, we say
that 𝑝 and 𝑞 are equivalent with respect to sublogic O , written 𝑝 ∼O 𝑞.37

By this account, ⟨𝜏⟩¬⟨a⟩ of Example 2.12 distinguishesP fromQ. On the other
hand, ⟨𝜏⟩ ⋀{⟨a⟩, ⟨b⟩} distinguishes Q from P. (The direction matters!) For
instance, the sublogic {⟨𝜏⟩⟨a⟩, ⟨𝜏⟩⟨b⟩} preorders P and Q in both directions;
so the two states are equivalent with respect to this logic.

Proposition 2.5 (Transitivity for free). Consider an arbitrary HML sublogic
O ⊆ HML. Then, ⪯O is a preorder, and ∼O an equivalence relation.38

Lemma 2.4 (HML simulation). Hennessy–Milner logic equivalence ∼HML is a
simulation relation.39

Proof. Assume it were not. Then there would need to be 𝑝 ∼HML 𝑞 with step
𝑝 𝛼−→ 𝑝′, and no 𝑞′ such that 𝑞 𝛼−→ 𝑞′ and 𝑝′ ∼HML 𝑞′. So there would need
to be a distinguishing formula 𝜑𝑞′ for each 𝑞′ that 𝑞 can reach by an 𝛼-step.
Consider the formula 𝜑𝛼 ≔ ⟨𝛼⟩ ⋀𝑞′∈Der(𝑞,𝛼) 𝜑𝑞′ . It must be true for 𝑝 and
false for 𝑞, contradicting 𝑝 ∼HML 𝑞.
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41 theorem HML_Spectrum.lts.Hennessy
_Milner_theorem

42 lemma LTS_Semantics.lts_semantics
.preorder_contraposition

Lemma 2.5 (Bisimulation invariance). If 𝑝 ∈ J𝜑K and 𝑝 ∼B 𝑞 then 𝑞 ∈ J𝜑K.40
Proof. Induct over the structure of 𝜑 with arbitrary 𝑝 and 𝑞.

• Case 𝑝 ∈ J⟨𝛼⟩𝜑K. Thus there is 𝑝′ ∈ J𝜑K with 𝑝 𝛼−→ 𝑝′. Because ∼B
is a simulation according to Lemma 2.1, this implies 𝑞′ with 𝑝′ ∼B 𝑞′.
The induction hypothesis makes 𝑝′ ∈ J𝜑K entail 𝑞′ ∈ J𝜑K and thus
𝑞 ∈ J⟨𝛼⟩𝜑K.

• Case 𝑝 ∈ J⋀𝑖∈𝐼 𝜑𝑖K. The induction hypothesis on the 𝜑𝑖 directly leads
to 𝑞 ∈ J⋀𝑖∈𝐼 𝜑𝑖K.

• Case 𝑝 ∈ J¬𝜑K. Symmetry of ∼B according to Proposition 2.2, implies
𝑞 ∼B 𝑝. By induction hypothesis, 𝑞 ∈ J𝜑K implies 𝑝 ∈ J𝜑K. So, using
contraposition, the case implies 𝑞 ∈ J¬𝜑K.

Combining bisimulation invariance for one direction and that ∼HML is a sym-
metric simulation (Proposition 2.5 and Lemma 2.4) for the other, we obtain
that HML precisely characterizes bisimilarity:

Theorem 2.1 (Hennessy–Milner theorem). Bisimilarity and HML equivalence
coincide, that is, 𝑝 ∼B 𝑞 precisely if 𝑝 ∼HML 𝑞.41

Remark 2.3 (Infinitary conjunctions). In the standard presentation of the
Hennessy–Milner theorem, image finiteness of the transition system is
assumed. This means that Der(𝑝, 𝛼) is finite for every 𝑝 ∈ P . The amount of
outgoing transitions matters precisely in the construction of 𝜑𝛼 in the proof
of Lemma 2.4. But as our definition of HML (Definition 2.11) allows infinite
conjunctions ⋀𝑖∈𝐼 …, we do not need an assumption here. The implicit
assumption is that the cardinality of index sets 𝐼 can match that of Der(𝑝, 𝛼).
The original proof by Hennessy & Milner (1980) uses binary conjunction
(𝜑1 ∧ 𝜑2) and thus can only express finitary conjunctions.

2.3.3 The Perks of Modal Characterizations

There is merit in also characterizing other equivalences through sublogics
O ⊆ HML. Modal characterizations have four immediate big advantages:

Modal characterizations lead to proper preorders and equivalences by design
due to Proposition 2.5. That is, if a behavioral preorder (or equivalence) is
defined through modal logics, there is no need of proving transitivity and
reflexivity (and symmetry).

Secondly, checking state equivalence for notions of HML sublogics can
soundly be reduced to checks on bisimulation-minimized systems as the trans-
formation does not affect the sets of observations for minimized states (by
combining Theorem 2.1 and Proposition 2.4).

Thirdly, modal characterizations can directly unveil the hierarchy between
preorders, if defined cleverly, because of the following property.

Proposition 2.6. If O ⊆ O′ then 𝑝 ⪯O′ 𝑞 implies 𝑝 ⪯O 𝑞 for all 𝑝, 𝑞.42
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43 Among other things, bisimilarity checking
has a better time complexity than other notions
as will be discussed in Section 3.3.3.

44 definition LTS_Semantics.lts_semantics
.leq_expressive

45 definition LTS_Semantics.lts_semantics
.leq_distinctive

46 lemma LTS_Semantics.lts_semantics
.subset_expressiveness
47 lemma LTS_Semantics.lts_semantics
.expressiveness_entails_distinctiveness

48 lemma LTS_Semantics.lts_semantics
.preorder_expressiveness_contraposition

Pay attention to the opposing directions of ⊆ and implication here!
Fourthly, as a corollary of Proposition 2.6, modal characterizations ensure

equivalences to be abstractions of bisimilarity, which is a sensible base notion
of equivalence.43

In Chapter 3, wewill discuss how the hierarchy of behavioral equivalences
can be understood nicely and uniformly if viewed through the modal lens.

2.3.4 Expressiveness and Distinctiveness

Proposition 2.6 actually is a weak version of another proposition about dis-
tinctiveness of logics.

Definition 2.14 (Preorder of expressiveness). We say that an Act-observation
language O is less or equal in expressiveness to another O′ iff, for any Act-
transition system, for each 𝜑 ∈ O , there is 𝜑′ ∈ O′ such that J𝜑K = J𝜑′K.
(The definition can also be read with regards to a fixed transition system S .)44
If the inclusion holds in both directions, O and O′ are equally expressive.

Definition 2.15 (Preorder of distinctiveness). We say that an Act-observation
language O is less or equal in distinctiveness to another O′ iff, for any Act-
transition system and states 𝑝 and 𝑞, for each 𝜑 ∈ O that distinguishes 𝑝
from 𝑞, there is 𝜑′ ∈ O′ that distinguishes 𝑝 from 𝑞.45 If the inclusion holds
in both directions, O and O′ are equally distinctive.

Lemma 2.6. Subset relationship entails expressiveness, which entails distinctive-
ness.

• If O ⊆ O′, then O is less or equal in expressiveness to O′.46

• If O is less or equal in expressiveness to O′, then O is less or equal in
distinctiveness to O′.47

The other direction does not hold. For instance, HML ⊈ HML ∖ {⊤}, but
they are equally expressive as ¬¬⊤ can cover for the removed element. At
the same time, {⊤} is more expressive than ∅, but equally distinctive.

The stronger version of Proposition 2.6 is thus:

Proposition 2.7. If O is less or equal in distinctiveness to O′ then 𝑝 ⪯O′ 𝑞
implies 𝑝 ⪯O 𝑞 for all 𝑝, 𝑞.48

Remark 2.4. Through the lens of expressiveness, we can also justify why
our convention to implicitly flatten conjunctions is sound: As this does not
change a conjunction’s truth value, HML subsets with and without flattening-
convention are equally expressive and thus distinctive.
Often, an equivalence may be characterized by different sublogics. In partic-
ular, one may find smaller characterizations as in the following example for
bisimilarity, which will be relevant in the upcoming game characterizations.
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49 theorem HML_Spectrum.lts.hml_and
_bisimulation_game_observations_equally
_distinctive

Definition 2.16 (Bisimulation observations). Consider O⌊B⌋ ⊆ HML
described by the following grammar:

𝜑⌊B⌋ ∶∶= ⟨𝛼⟩ ⋀𝑖∈𝐼 𝜑⌊B⌋
𝑖

∣ ¬𝜑⌊B⌋

O⌊B⌋ is a proper subset of HML. For instance, it lacks the observation
⋀{⟨a⟩, ⟨b⟩}. Due to the subset relation, O⌊B⌋ must be less or equal in
expressiveness to HML, but this inclusion too is strict as ⊤ cannot be covered
for. But both logics are equally distinctive!

Lemma 2.7. O⌊B⌋ and HML are equally distinctive.49

Proof. One direction is immediate from Lemma 2.6 as O⌊B⌋ ⊆ HML.
For the other direction, we need to establish that, for each 𝜑 ∈ HML

distinguishing some 𝑝 from some 𝑞, there is a 𝜑′ ∈ O⌊B⌋ distinguishing 𝑝
from 𝑞. We induct on the structure of 𝜑 with arbitrary 𝑝 and 𝑞.

• Case ⟨𝛼⟩𝜑 distinguishes 𝑝 from 𝑞. Thus there is 𝑝′ such that 𝑝 𝛼−→ 𝑝′

and that 𝜑 distinguishes 𝑝′ from every 𝑞′ ∈ Der(𝑞, 𝛼). By induction
hypothesis, there must be 𝜑′

𝑞′ ∈ O⌊B⌋ distinguishing 𝑝′ from 𝑞′ for each
𝑞′. Thus ⟨𝛼⟩ ⋀𝑞′∈Der(𝑞,𝛼) 𝜑′

𝑞′ ∈ O⌊B⌋ distinguishes 𝑝 from 𝑞.
• Case ⋀𝑖∈𝐼 𝜑𝑖 distinguishes 𝑝 from 𝑞. Therefore some 𝜑𝑖 already distin-
guishes 𝑝 from 𝑞. By induction hypothesis, there must be 𝜑′

𝑖 ∈ O⌊B⌋
distinguishing 𝑝 from 𝑞.

• Case ¬𝜑 distinguishes 𝑝 from 𝑞. Thus 𝜑 distinguishes 𝑞 from 𝑝. By
induction hypothesis, there is 𝜑′ ∈ O⌊B⌋ distinguishing 𝑞 from 𝑝. Ac-
cordingly, ¬𝜑′ ∈ O⌊B⌋ distinguishes 𝑝 from 𝑞.

The smaller bisimulation logic O⌊B⌋ will turn out to be closely related to the
game characterization of bisimilarity in Section 2.4.5.

2.4 Games

So far, we have only seen behavioral equivalences and modal formulas as
mathematical objects and not cared about decision procedures. This section
introduces game-theoretic characterizations as a way of easily providing deci-
sion procedures for equivalences and logics alike. Intuitively, the games can
be understood as dialogs between a party that tries to defend a claim and a
party that tries to attack it.

2.4.1 Reachability Games

We useGale–Stewart-style reachability games (in the tradition of Gale & Stew-
art, 1953) where the defender wins all infinite plays.
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50 locale Equivalence_Games.game

(1)

[2a] [2b]

(3)

Figure 2.11: A simple game.

Definition 2.17 (Reachability game). A reachability game G = (𝐺, 𝐺d, ) is
played on a directed graph consisting of

• a set of game positions 𝐺, partitioned into

– defender positions 𝐺d ⊆ 𝐺
– and attacker positions 𝐺a ≔ 𝐺 ∖ 𝐺d,

• and a set of game moves ⊆ 𝐺 × 𝐺.50

Definition 2.18 (Plays and wins). We call the paths 𝑔0𝑔1… ∈ 𝐺∞ with
𝑔𝑖 𝑔𝑖+1 plays of G from 𝑔0, where 𝐺∞ stands for finite and infinite words
over 𝐺. The defender wins infinite plays. If a finite play 𝑔0 … 𝑔𝑛 ›/› is stuck,
the stuck player loses: The defender wins the play if 𝑔𝑛 ∈ 𝐺a, and the attacker
wins if 𝑔𝑛 ∈ 𝐺d.

Usually, games are nondeterministic, that is, players have choices how a play
proceeds at their positions. The player choices are formalized by strategies:

Definition 2.19 (Strategies and winning strategies). An attacker strategy is a
(partial) function mapping play fragments ending at attacker positions to next
positions to move to, 𝑠a ∶ 𝐺∗𝐺a → 𝐺, where 𝑔a 𝑠a(𝜌𝑔a) must hold for all
𝜌𝑔a where 𝑠a is defined.

A play 𝑔0𝑔1… ∈ 𝐺∞ is consistent with an attacker strategy 𝑠a if, for all
its prefixes 𝑔0…𝑔𝑖 ending in 𝑔𝑖 ∈ 𝐺a, 𝑔𝑖+1 = 𝑠a(𝑔0…𝑔𝑖).

Defender strategies are defined analogously, 𝑠d ∶ 𝐺∗𝐺d → 𝐺.
If 𝑠 ensures a player to win, 𝑠 is called a winning strategy for this player.

The player with a winning strategy from 𝑔0 is said to win game G from 𝑔0.
Usually, we will focus on positional strategies, that is, strategies that only

depend on the most recent position, which we will type 𝑠a ∶ 𝐺a → 𝐺 (or
𝑠d ∶ 𝐺d → 𝐺, respectively).

We call the positions where a player has a winning strategy their winning
region.

Definition 2.20 (Winning region). The set Wina ⊆ 𝐺 of all positions 𝑔 where
the attacker wins in G is called the attacker winning region of G. The defender
winning region Wind is defined analogously.

Example 2.13 (A simple choice). Inspect the game in Figure 2.11, where round
nodes represent defender positions and rectangular ones attacker positions.
Its valid plays starting from (1) are (1), (1)[2a], (1)[2b], and (1)[2a](3). The
defender can win from (1) with a strategy moving to [2b] where the attacker
is stuck. Moving to [2a] instead would get the defender stuck. So, the de-
fender winning region is Wind = {(1), [2b]} and the attacker wins Wina =
{[2a], (3)}. In Figure 2.11, the winning regions are marked with blue for the
defender and red for the attacker.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.game%7Clocale
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51 This is just an instantiation of positional
determinacy of parity games (Zielonka, 1998).
Parity games extend reachability games by
number-coloring of positions. The defender
only wins the infinite plays where the least
color that appears infinitely often is even.
Reachability games are the subclass of parity
games only colored by 0.

(1, 0)

[2, 0]

(2, 1)

[3, 1]

[0, 1]

(0, 2)

[1, 2]

Figure 2.12: A part of Gleq.

The games we consider are positionally determined. This means, for each pos-
sible initial position, exactly one of the two players has a positional winning
strategy 𝑠.
Proposition 2.8 (Determinacy). Reachability games are positionally deter-
mined, that is, for any game, each game position has exactly one winner:
𝐺 = Wina ∪ Wind and Wina ∩ Wind = ∅, and they can win using a positional
strategy.51

We care about reachability games because they are versatile in characterizing
formal relations. Everyday inductive (and coinductive) definitions can easily
be encoded as games as in the following example.

Example 2.14 (The ≤-Game). Consider the following recursive definition of a
less-or-equal operator≤ on natural numbers in some functional programming
language. (Consider nat to be defined as recursive data type nat = 0 | Succ

nat.)

( 0 ≤ m ) = True

(Succ n ≤ 0 ) = False

(Succ n ≤ Succ m) = (n ≤ m)

We can think of this recursion as a game where the attacker tries to prove
that some natural number on the left is bigger than the right by always decre-
menting the left number and challenging the defender to do the same for the
right stack too. Whoever hits zero first, loses.

This means we distribute the roles such that the defender wins for output
True and the attacker for output False. The two base cases need to be dead
ends for one of the players.

Formally, the game Gleq consists of attacker positions [𝑛, 𝑚] and defender
positions (𝑛, 𝑚) for all 𝑛, 𝑚 ∈ ℕ, connected by chains of moves:

[𝑛 + 1, 𝑚] leq (𝑛, 𝑚)
(𝑛, 𝑚 + 1) leq [𝑛, 𝑚].

An excerpt of the game graph below [3, 1] and [1, 2] is shown in Figure 2.12.
Gleq now characterizes ≤ on ℕ in the sense that: The defender wins Gleq

from [𝑛, 𝑚] precisely if 𝑛 ≤ 𝑚. (Proof: Induct over 𝑛 with arbitrary 𝑚.)
The game is boring because the players do not ever have any choices. They

just count down their way through the natural numbers until they hit [0, 𝑚−
𝑛] if 𝑛 ≤ 𝑚, or (𝑛 − 𝑚 − 1, 0) otherwise.

Gleq is quite archetypical for the preorder and equivalence games we will
use in the following pages. But do not worry, the following games will de-
mand the players to make choices.

2.4.2 The Semantic Game of HML

As first bigger example of how recursive definitions can be turned into games,
let us quickly look at a standard way of characterizing the semantics of HML
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52 A detailed presentation of a more general
HML game, also extending to recursive HML,
can be found in Wortmann et al. (2015, Chapter
3).

53 locale Equivalence_Games.bisim_game

(Definition 2.12) through a game. The defender wins precisely if the game
starts from a state and formula such that the state satisfies the formula.

Definition 2.21 (HML game). For a transition system S = (P,Act, −→), the
HML game GS

HML = (𝐺HML, 𝐺d, HML) is played on 𝐺HML = P × HML,
where the defender controls observations and negated conjunctions, that is
(𝑝, ⟨𝛼⟩𝜑) ∈ 𝐺d and (𝑝, ¬ ⋀𝑖∈𝐼 𝜑𝑖) ∈ 𝐺d (for all 𝜑, 𝑝, 𝐼), and the attacker
controls the rest.

• The defender can perform the moves:

(𝑝, ⟨𝛼⟩𝜑) HML (𝑝′, 𝜑) if 𝑝 𝛼−→ 𝑝′ and
(𝑝, ¬⋀𝑖∈𝐼 𝜑𝑖) HML (𝑝, ¬𝜑𝑖) with 𝑖 ∈ 𝐼 ;

• and the attacker can move:

(𝑝, ¬⟨𝛼⟩𝜑) HML (𝑝′, ¬𝜑) if 𝑝 𝛼−→ 𝑝′ and
(𝑝, ⋀𝑖∈𝐼 𝜑𝑖) HML (𝑝, 𝜑𝑖) with 𝑖 ∈ 𝐼 and

(𝑝, ¬¬𝜑) HML (𝑝, 𝜑).

The intuition is that disjunctive constructs (⟨⋅⟩ ⋯, ¬ ⋀ ⋯) make it easier for a
formula to be true and thus are controlled by the defender who may choose
which of the ways to show truth is most convenient. At conjunctive constructs
(¬⟨⋅⟩ ⋯, ⋀ ⋯) the attacker chooses the option that is the easiest to disprove.
The most trivial case for the attacker to lose is (𝑝, ⊤).

Example 2.15. The game of Example 2.13 is exactly the HML game GSPQ
HML for

formula ⟨𝜏⟩¬⟨a⟩⊤ and state P of Example 2.12 with (1) ≔ (P, ⟨𝜏⟩¬⟨a⟩⊤),
[2a] ≔ (pa, ¬⟨a⟩⊤), [2b] ≔ (pb, ¬⟨a⟩⊤), and (3) ≔ (p1, ¬⊤).

The defender winning region Wind = {(P, ⟨𝜏⟩¬⟨a⟩⊤), (pb, ¬⟨a⟩⊤)} cor-
responds to the facts that P ∈ J⟨𝜏⟩¬⟨a⟩⊤K and pb ∈ J¬⟨a⟩⊤K.
As the technicalities are tangential to this thesis, we state the characterization
result without proof:52

Lemma 2.8. The defender wins GS
HML from (𝑝, 𝜑) precisely if 𝑝 ∈ J𝜑K.

2.4.3 The Bisimulation Game

We now can add the bottom layer of Figure 2.1: That bisimilarity can be char-
acterized through a game, where the defender wins if the game starts on a pair
of bisimilar states. This approach has been popularized by Stirling (1996).

Definition 2.22 (Bisimulation game). For a transition system S , the bisimula-
tion game GS

B is played on attack positions 𝐺a ≔ P ×P and defense positions
𝐺d ≔ Act × P × P with the following moves:53

• The attacker may challenge simulation

[𝑝, 𝑞] B (𝛼, 𝑝′, 𝑞) if 𝑝 𝛼−→ 𝑝′,

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game%7Clocale
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[𝑝, 𝑞] (𝛼, 𝑝′, 𝑞) [𝑝′, 𝑞′]

[𝑞, 𝑝]

𝑝 𝛼−→ 𝑝′ 𝑞 𝛼−→ 𝑞′

Figure 2.13: Game scheme of the bisimulation game GB (Definition 2.22).

• or the attacker may swap sides

[𝑝, 𝑞] B [𝑞, 𝑝],

• and the defender answers simulation challenges

(𝛼, 𝑝′, 𝑞) B [𝑝′, 𝑞′] if 𝑞 𝛼−→ 𝑞′.

A schematic depiction of the game rules can be seen in Figure 2.13. From
dashed nodes, the game proceeds analogously to the initial attacker position.

Example 2.16. Consider peven ∼B podd of Example 2.8. The bisimulation game
on this system is given by Figure 2.14:

[peven, podd]

(𝜏 , podd, podd) (𝜏, peven, peven)

[podd, peven]

swap

challenge

swap

challengeanswer

answer

Figure 2.14: Bisimulation game under peven, podd. Moves are annotated with
the game rules from which they derive.

Clearly, there is no way for the attacker to get the defender stuck. Whatever
strategy the attacker chooses, the game will go on forever, leading to a win for
the defender. That it is always safe for the defender to answer with moves to
[peven, podd] and [podd, peven] corresponds to R ≔ {(peven, podd), (podd, peven)}
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[Q, T]

[T, Q]

(𝜏 , qab, T)

[qab, tab]

[tab, qab]

[qab, ]

(a, q1, )

(b, q2, )

(𝜏 , tab, Q)

(𝜏, , Q)

[ , qab]

(a, q1, tab)

(b, q2, tab)

(b, , qab)

(a, , qab)

[q1, ]

[q2, ]

[ , q2]

[ , q1]

swap

Q 𝜏−→ qab

swap

T 𝜏−→

T 𝜏−→ qab

swap

T 𝜏−→ qab

T 𝜏−→

Q 𝜏−→ qab

Q 𝜏−→ qab

qab
a−→ q1

qab
b−→ q2

qab
a−→ q1

qab
b−→ q2

tab
b−→

tab
a−→

tab
a−→

tab
b−→

qab
b−→ q2

qab
a−→ q1

swap

Figure 2.15: Bisimulation game on non-bisimilar states Q and T of Example 2.17. Moves are labeled by their
justification. Defender-won positions are tinted blue, attacker-won ones red.

54 theorem Equivalence_Games.bisim
_game.bisim_game_characterization

55 lemma Equivalence_Games.bisim_game
.bisim_implies_defender_winning_strategy

56 lemma Equivalence_Games.bisim_game
.defender_winning_strategy_implies_bisim

being a bisimulation.

Example 2.17 (A game of trolls). Let us recall Example 2.7 of the “trolled
philosophers,” where we determined Q and T to be non-bisimilar. The bisim-
ulation game graph for the system is depicted in Figure 2.15, where we use
the minimized version of T from Example 2.11 to fit the game graph onto the
page. (This means, technically, read T to denote Tm.)

The attacker can win by moving [Q, T] B [T, Q] B (𝜏, , Q) B
[ , qab] B [qab, ] B (a, q1, ) ›/›B. Along this sequence of positions,
the defender never has a choice and is stuck in the end. The attacker exploits,
that T can reach an early deadlock via T 𝜏−→ .

Theorem 2.2 (Stirling’s game characterization). The defender wins the bisim-
ulation game GS

B starting at attacker position [𝑝, 𝑞] precisely if 𝑝 ∼B 𝑞.54

Proof. Sketch for both directions:

• If R is a symmetric simulation with (𝑝0, 𝑞0) ∈ R, then the following
positional defender strategy is winning from [𝑝0, 𝑞0]:55

𝑠((𝛼, 𝑝′, 𝑞)) ≔ [𝑝′, choose 𝑞′. (𝑝′, 𝑞′) ∈ R ∧ 𝑞 𝛼−→ 𝑞′].

• If there is a positional defender strategy 𝑠 winning from [𝑝0, 𝑞0], then
the following relation R𝑠 with (𝑝0, 𝑞0) ∈ R𝑠 is a symmetric simula-
tion:56

R𝑠 ≔ {(𝑝, 𝑞) ∣ there is a play (𝑝0, 𝑞0), … , (𝑝, 𝑞) following strategy 𝑠}.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.bisim_game_characterization%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.bisim_game_characterization%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.bisim_implies_defender_winning_strategy%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.bisim_implies_defender_winning_strategy%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.defender_winning_strategy_implies_bisim%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Equivalence_Games.html#Equivalence_Games.bisim_game.defender_winning_strategy_implies_bisim%7Cfact
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Figure 2.16: Screenshot of Peacock’s bisimula-
tion computer game. (In the computer game,
the colors are coded inversely to our presenta-
tion. The blue character represents the attacker-
controlled state.)

57 Variants of this algorithm and explanation
have also been used in Bisping (2018) and Bisp-
ing et al. (2022).

Remark 2.5 (Playing equivalence games). One of the big advantages of game
characterizations is that they provide a way to discuss equivalence and in-
equivalence interactively among humans. There also are several computer
game implementations of bisimulation games.

For instance, Peacock (2020) implements a game about simulation and
bisimulation as well as several weaker notions. The human plays the attacker
trying to point out the inequivalence of systems according to the rules of Def-
inition 2.22. Figure 2.16 shows a screenshot of said game. It can be played on
https://www.concurrency-theory.org/rvg-game/.
Remark 2.6 (Number comparison as simulation game). If one plays the bisim-
ulation game of Definition 2.22 without the swapping moves, it will charac-
terize the simulation preorder.

Consider the family of processes N𝑛 with 𝑛 ∈ ℕ. Define N0 ≔ 0 and
N𝑛+1 ≔ one.N𝑛. Then, the simulation game played from [N𝑛, N𝑚] is iso-
morphic to the ≤-game Gleq from Example 2.14. Therefore, the defender wins
[N𝑛, N𝑚] in the simulation game precisely if they win [𝑛, 𝑚] in the ≤-game.
We can compare numbers 𝑛 ≤ 𝑚 by comparing programs N𝑛 ⪯S N𝑚!

In this sense, comparisons of programs and of numbers are … comparable.

2.4.4 Deciding Reachability Games

All we need to turn a game characterization into a decision procedure is a way
to decide which player wins a position. With this, GHML of Definition 2.21
entails a model checking procedure for HML and GB a bisimulation checking
algorithm on finite-state systems.

Algorithm 2.1 describes how to compute who wins a finite reachability
game for each position in time linear to the size of the game graph O(| |).

Intuitively, compute_winning_region first assumes that the defender were
to win everywhere and that each outgoing move of every position might be a
winning option for the defender. Over time, every position that is determined
to be lost by the defender is added to a todo list.57

At first, the defender loses immediately exactly at the defender’s dead
ends. Each defender-lost position is added to the attacker_win set. To trigger
the recursion, each predecessor is noted as defender-lost, if it is controlled by
the attacker, or the amount of outgoing defender options is decremented if
the predecessor is defender-controlled. If the count of a predecessor position
hits 0, the defender also loses from there.

Once we run out of todo positions, we know that the attacker has winning
strategies exactly for each position we have visited.

The following Table 2.1 lists how Algorithm 2.1 computes the winning
region Wina = {[2a], (3)} of the simple choice game of Example 2.13.

https://www.concurrency-theory.org/rvg-game/
https://www.concurrency-theory.org/rvg-game/
https://www.concurrency-theory.org/rvg-game/
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1 def compute_winning_region(G = (𝐺, 𝐺d, )) ∶
2 defender_options ≔ [𝑔 ↦ 𝑛 ∣ 𝑔 ∈ 𝐺d ∧ 𝑛 = |{𝑔′ ∣ 𝑔 𝑔′}|]
3 attacker_win ≔ ∅
4 todo ≔ {𝑔 ∈ 𝐺d ∣ defender_options[𝑔] = 0}
5 while todo ≠ ∅ ∶
6 g ≔ some todo
7 todo ≔ todo ∖ {g}
8 if g ∉ attacker_win ∶
9 attacker_win ≔ attacker_win ∪ {g}

10 for gp ∈ (⋅ g) ∶
11 if gp ∈ 𝐺a ∶
12 todo ≔ todo ∪ {gp}
13 else ∶
14 defender_options[gp] ≔ defender_options[gp] − 1
15 if defender_options[gp] = 0∶
16 todo ≔ todo ∪ {gp}
17 Wina ≔ attacker_win
18 return Wina

Algorithm 2.1: Deciding the attacker winning region Wina of a reachability
game G in linear time of | | and linear space of |𝐺|.

Table 2.1: Solving the game of Example 2.13.

g defender_options todo

- (1) ↦ 2, (3) ↦ 0 (3)
(3) (1) ↦ 2, (3) ↦ 0 [2a]
[2a] (1) ↦ 1, (3) ↦ 0 ∅

As this game corresponds to the HML game by Example 2.15, the computa-
tion that the defender wins (1) checks that ⟨𝜏⟩¬⟨a⟩⊤ is true for state P of
Example 2.12.

The inner loop of Algorithm 2.1 clearly can run at most | |-many times.
Using sufficiently clever data structures, the algorithm hence shows:

Proposition 2.9. Given a finite reachability game G = (𝐺, 𝐺d, ), the at-
tacker’s winning region WinG

a (and WinG
d as well) can be computed in O(| |)

time and O(|𝐺|) space.

Everything we can characterize as a reachability game, can thus be easily
decided.

So, by now we know a world where equivalences are nice to characterize,
modal logics, and a world where they are nice to compute: games. Obviously,
there must be a link! Making this link explicit yields the core proof approach
for the rest of this thesis.
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2.4.5 How Bisimulation Game and HML Are Connected

Bisimulation game and Hennessy–Milner logic connect in a beautiful way.
This connection usually receives less attention than Hennessy–Milner the-
orem and Stirling’s characterization. But it is the key insight for the main
results of later chapters.

Let us briefly imagine a world without a dedicated bisimulation game. The
Hennessy–Milner theorem implies that we could directly use the HML game
of Definition 2.21 to describe bisimilarity:

Definition 2.23 (Naive bisimulation game). We extend the HML game of Def-
inition 2.21 by the following prefix:

1. To challenge [𝑝, 𝑞], the attacker picks a formula 𝜑 ∈ HML (claiming
that 𝜑 distinguishes the states) and yields to the defender (𝜑, 𝑝, 𝑞).

2. The defender decides where to start the HML game:

1. Either at (𝑝, ¬𝜑) (claiming 𝜑 to be non-distinguishing because it
is untrue for 𝑝)

2. or at (𝑞, 𝜑) (claiming 𝜑 to be non-distinguishing because it is true
for 𝑞).

3. After that, the turns proceed as prescribed by Definition 2.21.

This naive game, too, has the property that the defender wins from [𝑝, 𝑞] iff
𝑝 ∼B 𝑞. The downside of the game is that the attacker has infinitely many
options 𝜑 ∈ HML to pick from!

The proper bisimulation game of Definition 2.22, on the other hand, is
finite for finite transition systems. Therefore, it induces decision procedures
by the reasoning of Section 2.4.4.

We will now argue that the bisimulation game actually is a variant of the
naive game, where (1) the attacker names their formula gradually, and (2) the
formulas stem fromO⌊B⌋ ⊆ HML of Definition 2.16. To this end, we will show
that attacker’s winning strategies imply distinguishing formulas, and that a
distinguishing formula from O⌊B⌋ certifies the existence of winning attacker
strategies.

Example 2.18 (Formulating attacks). Let us illustrate how to derive distin-
guishing formulas using the game of Example 2.17.

Recall that the attacker wins by moving [Q, T] B [T, Q] B
(𝜏, , Q) B [ , qab] B [qab, ] B (a, q1, ) ›/›B. In Figure 2.17, we
label the game nodes with the (sub-)formulas this strategy corresponds to.
The cloud indicates where we omit some region where the defender wins.
Swap moves become negations, and simulation moves become observations
with a conjunction of formulas for each defender option. This attacker
strategy can thus be expressed by ¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤} ∈ O⌊B⌋. We will call such
formulas “strategy formulas.”
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[Q, T]

¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤}

[T, Q]

⟨𝜏⟩ ⋀{¬⟨a⟩⊤}

(𝜏, qab, T)

defender
wins

[qab, ]

⟨a⟩⊤ (a, q1, )

(b, q2, )

(𝜏 , tab, Q)

(𝜏, , Q)

[ , qab]

¬⟨a⟩⊤

Figure 2.17: The bisimulation game of Example 2.18 with attacker formulas.

58 An order on a set 𝐴 is well-founded iff each
nonempty subset 𝐴′ ⊆ 𝐴 has a minimal ele-
ment min𝐴′. In the game, the minima corre-
spond to the defender dead ends the attacker is
navigating towards.

More generally, the following lemmas explain the construction of distinguish-
ing formulas from attacker strategies, and back. They are a blueprint of game
characterization proofs throughout the thesis.

We will refer to the property that attacker wins in a game represent dis-
tinguishing formulas as “distinction soundness” of a game.

Lemma 2.9 (Distinction soundness). Let function 𝑠 be a positional winning
strategy for the attacker on GB from [𝑝, 𝑞]. Construct formulas recursively from
game positions, 𝜑𝑠(𝑔), as follows:

𝜑𝑠([𝑝, 𝑞]) ≔ {¬𝜑𝑠([𝑞, 𝑝]) if 𝑠([𝑝, 𝑞]) = [𝑞, 𝑝]
⟨𝛼⟩ ⋀{𝜑𝑠([𝑝′, 𝑞′]) ∣ 𝑞 𝛼−→ 𝑞′} if 𝑠([𝑝, 𝑞]) = (𝛼, 𝑝′, 𝑞)

Then 𝜑𝑠 is defined for [𝑝, 𝑞] and distinguishes 𝑝 from 𝑞. Also, 𝜑𝑠([𝑝, 𝑞]) ∈ O⌊B⌋.

Proof.

1. The recursive construction works to define 𝜑𝑠([𝑝, 𝑞]) as 𝑠 must induce
a well-founded order on game positions58 in order for the attacker to
win, and as the recursive invocations remain in the attacker winning
strategy.

2. The distinction can be derived by induction on the construction of
𝜑𝑠([𝑝, 𝑞]): Assume for 𝑝′, 𝑞′ appearing in recursive invocations of
the definition of 𝜑𝑠 that 𝜑𝑠([𝑝′, 𝑞′]) distinguishes them and that
𝜑𝑠([𝑝′, 𝑞′]) ∈ O⌊B⌋. We have to show that the constructions in 𝜑𝑠 still
fulfill this property:
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• As 𝜑𝑠([𝑝′, 𝑞′]) distinguishes 𝑝′ from 𝑞′, its negation ¬𝜑𝑠([𝑝′, 𝑞′])
must distinguish 𝑞′ from 𝑝′ by the HML semantics. Moreover, the
grammar of Definition 2.21 is closed under negation.

• For ⟨𝛼⟩ ⋀{𝜑𝑠([𝑝′, 𝑞′]) ∣ 𝑞 𝛼−→ 𝑞′} to distinguish 𝑝 from 𝑞, there
must be 𝑝 𝛼−→ 𝑝∗ ∈ J⋀{𝜑𝑠([𝑝′, 𝑞′]) ∣ 𝑞 𝛼−→ 𝑞′}K, and for all 𝑞∗

with 𝑞 𝛼−→ 𝑞∗ it must be that 𝑞∗ ∉ J⋀{𝜑𝑠([𝑝′, 𝑞′]) ∣ 𝑞 𝛼−→ 𝑞′}K.
We choose 𝑝∗ = 𝑝′, because, as 𝑠 is an attacker winning strat-
egy, 𝑠([𝑝, 𝑞]) = (𝛼, 𝑝′, 𝑞) is a valid move with 𝑝 𝛼−→ 𝑝′. Also,
all 𝑞′ the defender may select in answers remain in the winning
domain of the attacker, and we may use the induction hypothe-
sis that 𝑞′ ∉ J𝜑𝑠([𝑝′, 𝑞′])K. Therefore, for each 𝑞∗ there is a false
conjunct with 𝑞′ = 𝑞∗ in ⋀{𝜑𝑠([𝑝′, 𝑞′]) ∣ 𝑞 𝛼−→ 𝑞′} that proves
𝑞∗ ∉ J⋀{𝜑𝑠([𝑝′, 𝑞′]) ∣ 𝑞 𝛼−→ 𝑞′}K.

We say that a game moreover is distinction-complete if distinguishing formu-
las of a sublogic can be mirrored by attacker strategies.

Lemma 2.10 (Distinction completeness). If 𝜑 ∈ O⌊B⌋ distinguishes 𝑝 from 𝑞,
then the attacker wins from [𝑝, 𝑞].

Proof. By induction on the derivation of 𝜑 ∈ O⌊B⌋ according to the definition
from Definition 2.16 with arbitrary 𝑝 and 𝑞.

• Case 𝜑 = ⟨𝛼⟩ ⋀𝑖∈𝐼 𝜑𝑖. As 𝜑 distinguishes 𝑝 from 𝑞, there must be a
𝑝′ such that 𝑝 𝛼−→ 𝑝′ and that ⋀𝑖∈𝐼 𝜑𝑖 distinguishes 𝑝′ from every 𝑞′ ∈
Der(𝑞, 𝛼). That is, for each 𝑞′ ∈ Der(𝑞, 𝛼), at least one 𝜑𝑖 ∈ O⌊B⌋ must
be false. By induction hypothesis, the attacker thus wins each [𝑝′, 𝑞′].
As these attacker positions encompass all successors of (𝛼, 𝑝′, 𝑞), the
attacker also wins this defender position and can win from [𝑝, 𝑞] by
moving there with a simulation challenge.

• Case 𝜑 = ¬𝜑′. As 𝜑 distinguishes 𝑝 from 𝑞, 𝜑′ distinguishes 𝑞 from 𝑝.
By induction hypothesis, the attacker wins [𝑞, 𝑝]. So they can also win
[𝑝, 𝑞] by performing a swap.

Lemma 2.9 and Lemma 2.10, together with the fact that O⌊B⌋ and HML are
equally distinctive (Lemma 2.7), yield:

Theorem 2.3. The attacker wins GB from [𝑝, 𝑞] precisely if there is a formula
𝜑 ∈ HML distinguishing 𝑝 from 𝑞.

WithTheorem 2.3, we have added the last arrow on the right side of Figure 2.1.
Of course, Theorem 2.3 could also be arrived at by gluing together the

Hennessy–Milner theorem on bisimulation (Theorem 2.1) and Stirling’s
bisimulation game characterization (Theorem 2.2), modulo the determinacy
of games. But Theorem 2.3 transports a deeper insight:

The bisimulation game actually is a game of an attacker assembling a dis-
tinguishing formula from O⌊B⌋. The game rules for attacker moves follow the
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𝑝 and 𝑞 in
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Bisimulation
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formula 𝜑𝑠
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Certifiably yes Certifiably no

Def. 2.22

Bisimilar?

Alg. 2.1

[𝑝, 𝑞] ∈ WinGS
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Yes: Thm. 2.2 No: Lem. 2.9

Check relation fulfills
bisimulation Def. 2.7

Check distinction using
HML game Def 2.21 + Alg. 2.1

Figure 2.18: Checking bisimilarity and providing certificates.

59 And for the most abstract incarnation, there
will even be an Isabelle/HOL formalization in
Section 7.1.3.

grammar of O⌊B⌋. But parts of the HML semantics are baked into the game:
Intuitively, the attacker must propose formulas that are true-by-construction
for the left-hand state. To disprove the distinction, the defender may point
out how the formula is also satisfied by the right-hand state. Negation turns
the tables.

The rest of this thesis is about leveraging this intuition to address every
behavioral equivalence. We will meet Theorem 2.3 again three times—each
time in a more abstract form.59

2.5 Discussion

This chapter has taken a tour of characterizations for standard notions of be-
havioral preorder and equivalence on transition systems such as trace equiv-
alence and bisimilarity. The aim of this has been to prepare a generic frame-
work to characterize and decide behavioral equivalences. So far, we have only
instantiated the framework for bisimilarity, but the rest will follow.

Perspicuous algorithmics. In constructing the relationships of Figure 2.1
for bisimilarity, we have collected the theoretical ingredients for a certifying
algorithm to check bisimilarity of states.

Figure 2.18 describes how to not only answer the question whether two
states 𝑝 and 𝑞 are bisimilar, but how to also either provide a bisimulation
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relation or a distinguishing formula for the two as certificates for the answer.
(The arrows stand for computations, the boxes for data.)

In this view, the game of possible distinctions and their preventability
between attacker and defender serves as the “ground truth” about the bisim-
ilarity of two states. Bisimulation relations and modal formulas only appear
as certificates of defender and attacker strategies, mediating between game
and transition system. The Hennessy–Milner theorem emerges on this level
as a shadow of the determinacy of the bisimulation game (Idea 2). This whole
framework draws heavily from Stirling (1996). The following chapters will
reveal how the game framework generalizes to check multiple equivalences.

Alternatives. There are alternative frameworks for deciding behavioral
equivalences that this thesis will not be using:

• Fixed-point iteration. Simulation-like behavioral equivalences and
preorders can be expressed as greatest fixed points of monotonic func-
tions (Aceto et al., 2007, Section 4.3). Fixed-point iteration computes
such relations on finite-state transition systems by initially assuming
all states are related and iteratively removing pairs that violate the
(bi-)simulation condition. This process continues until no such pairs
remain. In effect, a chain reaction happens analogous to the one
that Algorithm 2.1 performs on the bisimulation game. Compared to
the game approach, fixed-point iteration usually is slower as it lacks
knowledge about logical connections between pairs in the candidate
relation.

• Partition refinement. The fastest algorithms for bisimilarity use par-
tition refinement (Paige & Tarjan, 1987). Partitions represent equiva-
lence relations as colorings on graphs, which is linear in the state space
|P| (opposed to quadratic combinations for pairs in relations for fixed
points and attacker positions for games). Intuitively, parts of the par-
titions are split up repeatedly, leading to a similar iterative refinement
as in the general fixed-point approach. The splits are also informed by
modal distinctions as explicated by Cleaveland (1991). But clever deci-
sions of where to split next and the leaner representation of data allow
for more efficient algorithmics. However, the nice approach only works
if the fixed-point characterization ensures intermediate relations to be
symmetric. This is only the case for bisimilarity, thus heavily restricting
the direct applicability of partition refinement.

• Reduction to bisimilarity. Other equivalences are usually checked by
transforming the transition system in some way to make bisimilarity
and the respective equivalence coincide on the system (Cleaveland &
Sokolsky, 2001, Section 3.4). A standard example would be to make
the transition system deterministic via subset construction, after which
trace equivalence can be checked as bisimilarity (Cleaveland & Hen-
nessy, 1993).
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• Term rewriting. If working on process-algebraic terms and similar
formalisms, equivalence can also be established through equational
reasoning (Mayr, 2000). This approach requires a behavioral congruence
with an axiomatic characterization which processes to consider as
equal. Intuitively, the algorithm then searches ways of rewriting one
process into another. But the rules usually create an infinite search
space, only allowing semi-decision procedures. Together with the
coupling to specific process calculi, the approach thus is better fit for
the context of proof assistants than for general equivalence check-
ers. However, proofs on axiomatic characterizations often contain
normalizations that can inform the design of reductions to bisimilarity.

• Characteristic formulas. Equivalence can also be handled through
characteristic modal formulas (Steffen, 1989). Intuitively, one con-
structs a formula for a state that is precisely true for all conceivable
equivalent states. Checking equivalence with another state then
boils down to model checking the formula on that state. However,
this approach requires a more complex language of recursive modal
formulas and remains mostly academic, as no major tools use it for
equivalence checking.

Modal logics point the way. We have observed that behavioral equivalences
form hierarchies and that these hierarchies are handled nicely using modal
characterizations to rank distinguishing powers (Section 2.3.3).

We have also seen how to link game rules to productions in a language of
potentially distinguishing formulas (Section 2.4.5). This departs from common
textbook presentations that motivate the bisimulation game through the rela-
tional (coinductive) characterization (e.g. Sangiorgi, 2012). In later chapters,
we will rather derive equivalence games from grammars of modal formulas
(Idea 3), to generalize the framework of Figure 2.18 from bisimilarity to whole
spectra of equivalence.

But first, we have to make formal what we mean by spectra of behavioral
equivalence.



3 Context: The Spectrum of
Equivalences

Related publications. This chapter presents
the spectrum of modal languages from
“Process equivalence problems as energy
games” (Bisping, 2023b) in a slightly clarified
manner. The used hierarchy itself derives from
Bisping et al. (2022). The alignment to the
authoritative work by van Glabbeek (1990) has
been formalized by Mattes (2024).

We will now take a deeper dive into the question how groups of behavioral
equivalences and preorders can be ranked in equivalence spectra.

For the following chapters, we will focus on the main “linear-time–
branching-time spectrum” for the semantics of concrete processes treated by
van Glabbeek (1990), the so-called “strong spectrum.” However, we will order
the equivalences using the approach of parameterized notions of observability
from the later “weak spectrum” by van Glabbeek (1993).

Section 3.1 provides the background on observability hierarchies, which
motivate the chapter’s first core idea:

Idea 4: Notions of observability bring order

Groups of equivalences can be defined and ranked in lattices of notions
of observability.

In particular, Section 3.2 will introduce such a spectrum, forming a hierarchy
of modal logics for the strong spectrum. From there, we quickly run into our
core question:

Idea 5: We have a spectroscopy problem

We can ask what notions of equivalence from a spectrum are the most
fitting to relate two states.

Section 3.3 will define the spectroscopy problem formally and give lower
bounds for its complexity on the strong spectrum.

3.1 Observability Hierarchies

Let us begin to pick up the idea from Section 2.3.3 that modal logics can nicely
rank equivalences. The intuition is that HML sublogics capture what we con-
sider to be observable. Themore wemark as observable, the finer the resulting
equivalence relations become.
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60 theorem HML_Spectrum.lts.observations
_traces_characterizes_trace_preorder
61 theorem HML_Spectrum.lts.observations
_simulation_characterize_simulation_preorder

62 Taking the two preceding lemmas together
with Theorem 2.1 for ∼B and HML.

3.1.1 Understanding the Equivalence Hierarchy through
Modal Logics

As promised, we revisit the hierarchy between bisimilarity, similarity, and
trace equivalence of Section 2.2.3, modally. So far, we have only looked into
the characterization of bisimilarity through the whole of HML inTheorem 2.1
or through O⌊B⌋ in Lemma 2.7. From now on, we will be working with hier-
archies of Hennessy–Milner theorems.

Definition 3.1 (Logics of simulation and traces). We define the two HML
sublogics OT, the linear positive fragment+, and OS, the positive fragment*,
by the grammars starting at 𝜑T and 𝜑S.

𝜑T ∶∶= ⟨𝛼⟩𝜑T ∣ ⊤
𝜑S ∶∶= ⟨𝛼⟩𝜑S ∣ ⋀𝑖∈𝐼⟨𝛼𝑖⟩𝜑S

𝑖

The logics characterize trace and simulation preorder (and equivalence):

Lemma 3.1 (Trace characterizations). 𝑝 ⪯T 𝑞 precisely if 𝑝 ⪯OT
𝑞.60

Lemma 3.2 (Simulation characterization). 𝑝 ⪯S 𝑞 precisely if 𝑝 ⪯OS
𝑞.61

Clearly, OT ⊂ OS ⊂ HML. So, Proposition 2.6 that sublogics will equate
at least as much as their parent logic, yields another way of establishing the
entailment hierarchy between bisimilarity, similarity, and trace equivalence
of Section 2.2.3.62

In the modal realm, equivalences become naturally comparable. Contrast
this with preceding definitions that live in different worlds: relational defini-
tion for (bi-)similarity of Definition 2.7 and denotational definition for trace
equivalence of Definition 2.5. Heterogenous definitions lead to complicated
proofs.

The modal view also reveals an intuitive hierarchy of “testing scenarios”
for the equivalences, framed as black box tests in van Glabbeek (1990):

Trace equivalence matches an observer that can see sequences of events. They
just watch repeated executions of the program, but are oblivious to pos-
sibilities and decisions.

Similarity matters to an experimenter that can also explore different branches
of possibilities. This is valid if the experimenter can somehow copy the
system state during the execution.

Bisimilarity captures that the experimenter can moreover determine if a fu-
ture course of events is impossible at some point. This means that the
experimenter can not only copy the execution state but also exhaus-
tively test every possibility of how the system may continue.

But such levels of observability do not need to be linear, as we will see in the
next subsection …

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/HML_Spectrum.html#HML_Spectrum.lts.observations_traces_characterizes_trace_preorder%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/HML_Spectrum.html#HML_Spectrum.lts.observations_traces_characterizes_trace_preorder%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/HML_Spectrum.html#HML_Spectrum.lts.observations_simulation_characterize_simulation_preorder%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/HML_Spectrum.html#HML_Spectrum.lts.observations_simulation_characterize_simulation_preorder%7Cfact
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Figure 3.1: Participants of ETAPS’22 discussing
the spectrum of smartphone sizes. (Which is
dominated by Hermanns’s phone, at the bottom
of the picture.)
(Photo: ETAPS Association)

Bisimilarity

Similarity Failure equivalence

Trace equivalence

Figure 3.2: Equivalence hierarchy including
failure equivalence.

3.1.2 Incomparabilities

Often, things we compare are comparable with respect to different dimensions.
For instance, one can compare smartphone sizes with respect to width and
height, as seen in Figure 3.1. This phenomenon of orthogonal dimensions also
occurs for behavioral equivalences.

A well-known and natural notion of equivalence is that of failure equiva-
lence. Intuitively, a failure says that the experimenter may follow a trace and
see which actions are impossible at its end. Its standard definition is based on
failure denotations:

Definition 3.2 (Failures). The set of failures of a process Failures(𝑝) ⊆ Act∗ ×
2Act is recursively defined as

• ((), 𝑋) ∈ Failures(𝑝) if 𝑋 ∩ Ini(𝑝) = ∅,
• (𝛼𝑤⃗, 𝑋) ∈ Failures(𝑝) if there is 𝑝′ with 𝑝 𝛼−→ 𝑝′ and (𝑤⃗, 𝑋) ∈

Failures(𝑝′).

For instance, the failure (𝜏, {a}) is in Failures(P) but not in Failures(Q) on
Figure 2.3.

But would it not be nice if we could prevent the invention of new mathe-
matical objects as denotations for each new notions of observability we con-
sider? Fortunately, we can save the work, by directly employing modal logics:

Definition 3.3 (Failure logic). We define failure observationsOF by the gram-
mar:

𝜑F ∶∶= ⟨𝛼⟩𝜑F ∣ ⋀𝑖∈𝐼 ¬⟨𝛼𝑖⟩⊤
Clearly, this encompasses what we may observe via traces, but is something
that we cannot observe using simulation observations. We consider ⪯F given
by ⪯OF

.
The distinguishing failure (𝜏, {a}) can be expressed as ⟨𝜏⟩ ⋀{¬⟨a⟩⊤} ∈

OF in HML. The formula distinguishes P from Q on Figure 2.3, P ⪯̸F Q. This
sets failures apart from simulation, as P ⪯S Q (cf. Example 2.6). On the
other hand, no failure fromOF, distinguishes Q from P, implying Q ⪯F P, but
Q ⪯̸S P.

As a consequence, simulation preorder and failure preorder are incompa-
rable, that is, neither one implies the other. The same is true of the corre-
sponding equivalences: similarity and failure equivalence. The situation is
summed up by the non-linear hierarchy in Figure 3.2. After a quick glance at
the diamond-like figure, it probably comes as no surprise what kind of math-
ematical structure we employ to handle the hierarchy: lattices.

3.1.3 Lattices

To handle non-linearity, we will work with lattices of notions of behavioral
equivalence. The following definition gives the preliminaries to talk about
this kind of partial orders.
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63 Note that not necessarily 𝑏 ∈ 𝐵′! Moreover,
some sets do not have lower/upper bounds.

{1, 2, 3}

{1, 3}{1, 2} {2, 3}

{2}{1} {3}

∅

Figure 3.3: Lattice of subsets from Example 3.1.
Solid lines stand for inclusion from bottom to
top, transitive lines are left out.

(0, 0)

1
2

1
2

(∞, 0)(0, ∞)

(∞, ∞)

Figure 3.4: Visualization of the infinitary grid of
ℕ2 (and in gray, ℕ2

∞) in Example 3.2.

Definition 3.4 (Lattices, bounds, chains). A lattice is a partially ordered set
(𝐵, ≤), where there are greatest lower bounds inf{𝑏1, 𝑏2} and least upper
bounds sup{𝑏1, 𝑏2} between each pair of elements 𝑏1, 𝑏2 ∈ 𝐵.

• The greatest lower bound of a set 𝐵′ ⊆ 𝐵 is called its infimum, inf𝐵′. It
refers to the greatest element 𝑏 ∈ 𝐵 such that 𝑏 ≤ 𝑏′ for all 𝑏′ ∈ 𝐵′.63

• Dually, the least upper bound of a set 𝐵′ ⊆ 𝐵 is called its supremum,
sup𝐵′. It refers to the least element 𝑏 ∈ 𝐵 such that 𝑏 ≥ 𝑏′ for all
𝑏′ ∈ 𝐵′.

• For the pair-wise infimum we also use infix notation 𝑏1 ⊓ 𝑏2 =
inf{𝑏1, 𝑏2}, and analogously 𝑏1 ⊔ 𝑏2 = sup{𝑏1, 𝑏2}.

• If a lattice (𝐵, ≤) not only allows infima and suprema for pairs but for
any set 𝐵′ ⊆ 𝐵, it is called complete. We say inf-complete or sup-
complete if only one of the two is true.

• We call a totally ordered subset 𝐵′ ⊆ 𝐵 a chain.
• Dually, some 𝐵′ ⊆ 𝐵 with no two elements 𝑏1, 𝑏2 ∈ 𝐵′ such that

𝑏1 ≤ 𝑏2 is called an anti-chain.
• The upward closure ↑𝐵′ of a 𝐵′ ⊆ 𝐵 is defined as {𝑏 ∈ 𝐵 ∣ ∃𝑏′ ∈

𝐵′. 𝑏′ ≤ 𝑏}. Analogously, the downward closure is given by ↓𝐵′ ≔
{𝑏 ∈ 𝐵 ∣ ∃𝑏′ ∈ 𝐵′. 𝑏 ≤ 𝑏′}.

Example 3.1 (Subset lattice). Given any set 𝐵, its subsets ordered by set in-
clusion (2𝐵, ⊆) form a complete lattice.

The greatest lower bound is given by set intersection ⋂ 𝐵′ with 𝐵′ ⊆ 𝐵.
The least upper bound is set union ⋃ 𝐵′ with 𝐵′ ⊆ 𝐵. The empty set ∅ ∈ 2𝐵

is the least element, 𝐵 ∈ 2𝐵 is itself the greatest element.
Consider the subset lattice over 𝐵 = {1, 2, 3}. It is “cube-like,” as can

be seen in its Hasse diagram in Figure 3.3. An example of a (maximal) chain
would be {∅, {1}, {1, 2}, 𝐵} (the nodes connected by a blue dotted line in the
figure), because its members are ordered linearly ∅ ⊂ {1} ⊂ {1, 2} ⊂ 𝐵. The
set {{1}, {2}, {3}} forms a (maximal) anti-chain (the nodes connected by a
red dashed line in the figure), because its members do not include each other.
Their respective subsets are chains / anti-chains as well.

Example 3.2 (Vector lattice). Given a linearly ordered set (𝐵, ≤𝐵), its 𝑑-ary
Cartesian product with pointwise order (𝐵𝑑, ≤) forms a lattice, where 𝑏 ≤ 𝑏′

iff 𝑏𝑘 ≤ 𝑏′
𝑘 for all 𝑘 ∈ {1, …, 𝑑}. Greatest lower bounds and least upper

bounds can be transferred pointwise from 𝐵.
For instance, pairs of natural numbers, (ℕ2, ≤), form a lattice, as visual-

ized in Figure 3.4. It is inf-complete, that is, for any set from ℕ2, one can pick a
greatest lower bound. However, the lattice is not sup-complete: For instance,
the set ℕ×{0} has no upper bound. If we take the natural numbers extended
with an upper bound ∞, ℕ∞, as basis, then (ℕ2

∞, ≤) forms a complete lattice.

When working with vectors, we assume standard notation, in particular, for
𝑑-dimensional vector addition 𝑏 + 𝑐 ≔ (𝑏1 + 𝑐1, …, 𝑏𝑑 + 𝑐𝑑). By ê𝑘, we denote
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64 In particular, the weak spectrum (van
Glabbeek, 1993) makes this concept of notions
really formal. Also, we usually implicitly refer
to the full version of the strong spectrum (van
Glabbeek, 2001).

the unit vector where the 𝑘-th component is 1 and all other components equal
0. For example, ê2 in a 3-dimensional context equals (0, 1, 0). The zero vector
(0, …, 0) is denoted by 0.

3.2 The Linear-Time–Branching-Time Spectrum

Van Glabbeek’s two papers on the “linear-time–branching-time spectrum”
(1990, 1993) show how all common equivalences can be understood to form a
lattice of sublanguages of HML (and a variant of HML for equivalences with
silent steps). His hierarchy of equivalences derives from a hierarchy of no-
tions of observability.64 We will introduce a similar construction: at first, in a
generic form, then for the strong spectrum of van Glabbeek (1990).

3.2.1 Spectra as Observability Lattices

We will discuss various equivalence spectra. Van Glabbeek (1990, 1993) al-
ready gives two different ones. Let us first introduce an abstract description
of such spectra.

Definition 3.5 (Equivalence spectrum). An equivalence spectrum (N, ≤,
O𝑁∈N) consists of

• a lattice of notions of observability, N, partially ordered by ≤ ⊆ N × N,
and

• corresponding logics O𝑁 ∶ 2HML for 𝑁 ∈ N.

O𝑁∈N must be monotonic, that is: for any two notions 𝑁, 𝑀 ∈ N, it holds
that

𝑁 ≤ 𝑀 implies O𝑁 ⊆ O𝑀 .

Let us use our new definition to construct a subset lattice as in Example 3.1 to
recreate the hierarchy of Figure 3.2.

Example 3.3 (Diamond spectrum). Consider the notions

Nsimple ≔ 2{⊕,⊗},

ordered by subset inclusion, and the family of observation languages Osimple
𝑁∈N

given by the family of grammars with some conditional productions:

𝜑𝑁 ∶∶= ⊤
∣ ⟨𝛼⟩𝜑𝑁

∣ ⋀𝑖∈𝐼 𝜑𝑁
𝑖 if ⊕ ∈ 𝑁

∣ ⋀𝑖∈𝐼 ¬⟨𝛼𝑖⟩⊤ if ⊗ ∈ 𝑁
∣ ¬𝜑𝑁 if {⊕, ⊗} = 𝑁 .



48 Chapter 3. Context: The Spectrum of Equivalences

Bisimilarity
{⊕, ⊗}

Similarity
{⊕}

Failure equivalence
{⊗}

Trace equivalence
∅

Figure 3.5: Hierarchy of simple notions of
equivalence. (From now on, there are no arrows
of implication: The lines stand for ≤ or ⊆ rela-
tionships in the lattice!)

65 “Strong” means that we treat 𝜏 like any other
action. This traditional naming alludes to the
fact that weak notions, which wash away cer-
tain differences of internal 𝜏-behavior, are im-
plied by their strong counterparts.

Clearly, 𝑁 ⊆ 𝑀 implies O𝑁 ⊆ O𝑀 for 𝑁, 𝑀 ∈ Nsimple. We obtain the
diamond hierarchy of Figure 3.5. It matches the diamond of Figure 3.2, but
this time, the hierarchy is an effect of the ordered notions.

While the incomparable languages of Section 3.1 form no lattice, e.g. OS ∪
OF ≠ HML, the notions of the present Example 3.3 do form a lattice, as {⊕} ∪
{⊗} = {⊕, ⊗}. This is one of the reasons why it is convenient to add notions
of observability as an abstraction layer.

We can also ask what the least notion is to include a specific formula:

Definition 3.6 (Syntactic expressiveness price). In the context of a spectrum
(N, ≤,O𝑁∈N), the syntactic expressiveness price of a formula 𝜑 that appears in
one of the logics (i.e. 𝜑 ∈ ⋃𝑁∈N

O𝑁 ) is defined as

expr(𝜑) ≔ min{𝑁 ∈ N ∣ 𝜑 ∈ O𝑁}.

Note that, given our definition of spectra, the minimum of Definition 3.6 does
not need to exists—but it does for the spectra we will be working with.

Thinking of the lattice of notions as a hierarchy of how difficult it is to tell
processes apart, we consider this as a kind of “price tag” to put on formulas
depending on their syntactic complexity. Higher syntactic complexity allows
formula sets of higher expressiveness.

In this view, a trace formula is cheaper than a failure formula. Using Ex-
ample 3.3: The prices differ expr(⟨𝜏⟩⟨a⟩) = ∅ ⊂ {⊗} = expr(⟨𝜏⟩ ⋀{¬⟨a⟩}),
which captures that we need a strictly smaller part of the grammar to con-
struct the trace formula.

The concept of notions of equivalence will allow us to conveniently handle
big equivalence hierarchies.

3.2.2 Strong Notions of Observability

Now we can approach the strong spectrum by van Glabbeek (1990).65 We will
encode its notions as a ℕ∞-vector lattice as in Example 3.2. To cover all com-
mon behavioral preorders, we use six dimensions, counting certain syntactic
features of HML formulas:

1. Modal depth of observations (⟨𝛼⟩ …).
2. Nesting depth of conjunctions (⋀{… }).
3. Maximal modal depth of deepest positive conjuncts in conjunctions.
4. Maximal modal depth of the other positive conjuncts in conjunctions.
5. Maximal modal depth of negative conjuncts in conjunctions.
6. Nesting depth of negations (¬ …).

Definition 3.7 (Strong spectrum). We define the strong notions of observability
using vectors of extended naturals

Nstrong ≔ ℕ6
∞,
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66 primrec Priced_HML.formula_of_price

ordered by pointwise comparison of vector components. The family of strong
observation languages Ostrong

𝑁∈Nstrong is given by the parameterized grammar start-
ing from 𝜑𝑁 :66

𝜑𝑁 ∶∶= ⊤
∣ ⟨𝛼⟩𝜑𝑁−ê1

∣ ⋀{𝜑(𝑁−ê2)⊓(𝑁3,∞,∞,∞,∞,∞),
𝜓(𝑁−ê2)⊓(∞,∞,∞,𝑁3,∞,∞), 𝜓(𝑁−ê2)⊓(∞,∞,∞,𝑁3,∞,∞), …}

𝜓𝑁 ∶∶= 𝜑(𝑁⊓(𝑁4,∞,∞,∞,∞,∞))

∣ ¬𝜑(𝑁⊓(𝑁5,∞,∞,∞,∞,∞))−ê6

The productions only exist if the respective recursive invocations are defined
on the domain of notions. For instance, 𝜑𝑁 ⇝ ⟨𝛼⟩𝜑𝑁−ê1 is no valid produc-
tion for 𝑁 = (0, 1, 0, 0, 0, 0) because (−1, 1, 0, 0, 0, 0) ∉ Nstrong.

The number of 𝜓-conjuncts in ⋀{… } is free–in particular, there might be
none or infinitely many.

Example 3.4 (Formula language). The smallest notion to cover the failure for-
mula of Section 3.1.2 would be (2, 1, 0, 0, 1, 1), that is,

⟨𝜏⟩ ⋀{¬⟨a⟩⊤} ∈ Ostrong
(2,1,0,0,1,1).

This is because the formula has two levels of modal observations, where
the inner one is negated. The negation is wrapped in a conjunction with
no positive conjuncts. A visualization for how exprstrong(⟨𝜏⟩ ⋀{¬⟨a⟩⊤}) =
(2, 1, 0, 0, 1, 1) (according to Definition 3.6) comes together is given in
Figure 3.6. Formally, the reason is that the following derivation is optimal:

𝜑(2,1,0,0,1,1) ⇝ ⟨𝜏⟩𝜑(1,1,0,0,1,1)

⇝ ⟨𝜏⟩ ⋀{𝜓(1,0,0,0,1,1)}
⇝ ⟨𝜏⟩ ⋀{¬𝜑(1,0,0,0,1,0)}
⇝ ⟨𝜏⟩ ⋀{¬⟨a⟩𝜑(0,0,0,0,1,0)}
⇝ ⟨𝜏⟩ ⋀{¬⟨a⟩⊤}.

If we reexamine the grammar of OF in Definition 3.3, we notice that the for-
mulas it can produce almost match those of Ostrong

(∞,1,0,0,1,1) of the strong spec-
trum in Definition 3.7. The latter generates the 𝜑F-grammar in Figure 3.9. As
Lemma 3.3 will show, both languages are equally distinctive (Definition 2.15).

⟨𝜏⟩ ∧ ¬ ⟨a⟩ ⊤

𝑒1 = 2
𝑒2 = 1

𝑒5 = 1𝑒6 = 1

Figure 3.6: Pricing formula ⟨𝜏⟩ ⋀{¬⟨a⟩⊤} with syntactic expressiveness of
(2, 1, 0, 0, 1, 1).

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_HML.html#Priced_HML.formula_of_price%7Cconst
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⟨𝜏⟩ ∧

⟨𝑒𝑐𝐴⟩ ⟨𝑙𝑐𝐴⟩ ⊤

⟨𝜏⟩ ⊤

¬ ⟨𝑒𝑐𝐵⟩ ⊤

𝑒1 = 3
𝑒2 = 1

𝑒3 = 2 𝑒4 = 1

𝑒5 = 1𝑒6 = 1

Figure 3.7: Pricing formula ⟨𝜏⟩ ⋀{⟨𝑒𝑐𝐴⟩⟨𝑙𝑐𝐴⟩⊤, ⟨𝜏⟩⊤, ¬⟨𝑒𝑐𝐵⟩⊤} with syn-
tactic expressiveness (3, 1, 2, 1, 1, 1).

An example for the pricing of a more complex tree-like formula is given
in Figure 3.7.
Remark 3.1 (Explicit formula prices). In my papers (Bisping et al., 2022; Bisp-
ing, 2023b; Bisping & Jansen, 2024), the syntactic expressiveness price of for-
mulas expr is explicitly defined, instead of using a family of grammars. In this
thesis, expr is indirectly defined through Definition 3.6.

The expressiveness price exprstrong of formulas in the strong spectrum
(Definition 3.7) can be recursively characterized as described in Bisping
(2023b) (we will drop the “strong” for readability):

expr(⊤) = 0
expr(⟨𝛼⟩𝜑) = ê1 + expr(𝜑)

expr(¬𝜑) = ê6 + expr(𝜑)

expr( ⋀
𝑖∈𝐼

𝜓𝑖) = ê2 + sup({

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0

sup𝑖∈Pos (expr(𝜓𝑖))1
sup𝑖∈Pos∖R (expr(𝜓𝑖))1
sup𝑖∈Neg (expr(𝜓𝑖))1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

} ∪ {expr(𝜓𝑖) ∣ 𝑖 ∈ 𝐼})

Neg ≔ {𝑖 ∈ 𝐼 ∣ ∃𝜑′
𝑖. 𝜓𝑖 = ¬𝜑′

𝑖}
Pos ≔ 𝐼 ∖ Neg

R ≔ {∅ if Pos = ∅
{𝑟} for some 𝑟 ∈ Pos with (expr(𝜓𝑟))1 max. for Pos.

Note that there is a minor divergence from Bisping (2023b) in that the present
thesis prices expr(⊤) at 0 instead of ê2. This change is done to align the pricing
to the one we will need for the weak spectrum in later chapters.

Clearly, the explicit pricing of formulas is more versatile for the imple-
mentation direction we are aiming at. The grammar view, on the other hand,
is particularly nice to see how our HML sublanguages will align to games.
The strong spectrum of Definition 3.7 covers the notions of behavioral equiv-
alence we have discussed so far. (What grammars due to the coordinates look
like is listed in Figure 3.9 and Figure 3.10.)
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67 theorem Priced_Spectrum.lts.traces
_priced_characterization

68 theorem Priced_Spectrum.lts.simulation
_priced_characterization

69 When writing vectors in labels and figures,
we omit the parentheses (… ) for readability.

Lemma 3.3 (Spectrum characterization). Traces, simulation, bisimulation and
failures are covered as follows:

1. The observation language Ostrong
(∞,0,0,0,0,0) exactly matches the characteri-

zation of traces OT from Definition 3.1 and thus characterizes trace pre-
order.67

2. The observation languageOstrong
(∞,∞,∞,∞,0,0) exactly matches the character-

ization of simulation observations OS from Definition 3.1 and thus char-
acterizes simulation.68

3. The observation languageOstrong
(∞,∞,∞,∞,∞,∞) matches HML in distinctive-

ness and thus characterizes bisimilarity.
4. The observation language Ostrong

(∞,1,0,0,1,1) matches failure observations OF
of Definition 3.3 in distinctiveness.

Proof.

• Claim (1) for traces is trivial.
• Claim (2) for simulation is trivial, given flattening of conjunctions.
• For claim (3) of bisimilarity, observe that O⌊B⌋ ⊆ Ostrong

(∞,∞,∞,∞,∞,∞)
by examining its grammar in Definition 2.16. As O⌊B⌋ already has
complete HML distinctiveness by Lemma 2.7, so must its superlogic
Ostrong

(∞,∞,∞,∞,∞,∞).
• For claim (4) of failures, we must note that Ostrong

(∞,1,0,0,1,1) also contains
failure observations that end in conjunctions with a ¬⊤-conjunct. But
these are trivially false and thus cannot add to distinctiveness.

So far, we have only established that the six-dimensional spectrum covers
the notions that the diamond of Example 3.3 has already covered–in a more
complicated way. The extra dimensions will pay off in the next subsection.

3.2.3 The Strong Linear-Time–Branching-Time Spectrum

Using the six dimensions of Definition 3.7, we can assign coordinates to all
other common notions of the strong linear-time–branching-time spectrum.

Definition 3.8 (Strong linear-time–branching-time spectrum). Coordinates
with respect to the notions of Definition 3.7 for the common notions of be-
havioral equivalence and preorder in the strong linear-time–branching-time
spectrum are given in Figure 3.8.69

The coordinates of Definition 3.8 define a hierarchy of modal languages. Fig-
ure 3.9 and Figure 3.10 list the grammars that are described through the coor-
dinates in interplay with Definition 3.7. The defining aspects of each grammar
are marked in blue. The conjunction productions with “…” are to be read in
the sense that they allow arbitrary many conjuncts; in particular, empty and

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.traces_priced_characterization%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.traces_priced_characterization%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.simulation_priced_characterization%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.simulation_priced_characterization%7Cfact
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bisimulation B
∞, ∞, ∞, ∞, ∞, ∞

2-nested simulation 2S
∞, ∞, ∞, ∞, ∞, 1

ready simulation RS
∞, ∞, ∞, ∞, 1, 1

ready trace RT
∞, ∞, ∞, 1, 1, 1

failure trace FT
∞, ∞, ∞, 0, 1, 1

readiness R
∞, 1, 1, 1, 1, 1

possible future PF
∞, 1, ∞, ∞, ∞, 1

impossible future IF
∞, 1, 0, 0, ∞, 1

simulation 1S
∞, ∞, ∞, ∞, 0, 0

revivals RV
∞, 1, 1, 0, 1, 1

failure F
∞, 1, 0, 0, 1, 1

trace T
∞, 0, 0, 0, 0, 0

enabledness E
1, 0, 0, 0, 0, 0

universal U
0, 0, 0, 0, 0, 0

Figure 3.8: Hierarchy of common equivalences/preorders ordered by observ-
ability coordinates.

70 To be precise, Mattes (2024) works with the
version of the spectrum from Bisping (2023b).
The only real difference is that, there, ⊤ is
priced at 1 conjunction, while the present spec-
trum prices it at 0, cf. Remark 3.1.

infinitary conjunctions are possible. If a non-terminal appears only once in
the conjunction production, at most one such subformula is allowed.

For the rest of the thesis, we will take the equivalences as defined by the
coordinates as canonical. But, of course, it is natural to ask whether the equiv-
alences thus defined correspond to previous definitions in this thesis and the
literature. Lemma 3.3 already establishes that the coordinates of traces, sim-
ulation, failures, and bisimulation match the common definitions.

Mattes (2024) proves in Isabelle/HOL that our coordinate system spectrum
matches the distinctiveness of the modal characterizations by van Glabbeek
(2001).70 This entails a lot of fine print, which we will not reproduce here.

The grammars already contain a trick to handle equivalences of decorated
traces, which we should discuss as it will be mirrored in game rules later on:
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Universal, U at (0, 0, 0, 0, 0, 0):

𝜑U ∶∶= ⊤

Enabledness, E at (1, 0, 0, 0, 0, 0):

𝜑E ∶∶= ⟨𝛼⟩𝜑U ∣ 𝜑U

Traces, T at (∞, 0, 0, 0, 0, 0):

𝜑T ∶∶= ⟨𝛼⟩𝜑T ∣ 𝜑U

Failures, F at (∞, 1, 0, 0, 1, 1):

𝜑F ∶∶= ⟨𝛼⟩𝜑F ∣ ⋀{𝜓F, 𝜓F, …}
𝜓F ∶∶= ¬𝜑E ∣ ⊤

Revivals, RV at (∞, 1, 1, 0, 1, 1):

𝜑RV ∶∶= ⟨𝛼⟩𝜑RV ∣ ⋀{𝜑E, 𝜓F, 𝜓F, …}

Readiness, R at (∞, 1, 1, 1, 1, 1):

𝜑R ∶∶= ⟨𝛼⟩𝜑R ∣ ⋀{𝜓R, 𝜓R, …}
𝜓R ∶∶= 𝜑E ∣ 𝜓F

Failure trace, FT at (∞, 1, ∞, 0, 1, 1):

𝜑FT ∶∶= ⟨𝛼⟩𝜑FT ∣ ⋀{𝜑FT, 𝜓F, 𝜓F, …}

Ready trace, RT at (∞, 1, ∞, 1, 1, 1):

𝜑RT ∶∶= ⟨𝛼⟩𝜑RT ∣ ⋀{𝜑RT, 𝜓R, 𝜓R, …}

Figure 3.9: Grammars induced by coordinates for strong linear-time notions
of equivalence.

The idea behind failure traces is that one observes a trace of actions and at
each step a set of actions that are disabled. Ready traces work similarly, but
with disabled and enabled actions in between.

Example 3.5 (Failure traces). Consider the following processes, which are
slightly deeper variants of the situation we encountered with Q and troll pro-
cess T in Example 2.7.

Q′ ≔ 𝜏 .(a.a + b.b)
T′

�aa ≔ Q′ + 𝜏 .a.a
T′

�a ≔ Q′ + 𝜏 .a
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Impossible futures, IF at (∞, 1, 0, 0, ∞, 1):

𝜑IF ∶∶= ⟨𝛼⟩𝜑IF ∣ ⋀{𝜓IF, 𝜓IF, …}
𝜓IF ∶∶= ¬𝜑T ∣ ⊤

Possible futures, PF at (∞, 1, ∞, ∞, ∞, 1):

𝜑PF ∶∶= ⟨𝛼⟩𝜑PF ∣ ⋀{𝜓PF, 𝜓PF, …}
𝜓PF ∶∶= 𝜑T ∣ 𝜓IF

Simulation, 1S at (∞, ∞, ∞, ∞, 0, 0):

𝜑1S ∶∶= ⟨𝛼⟩𝜑1S ∣ ⋀{𝜑1S, 𝜑1S, …}

Ready simulation, RS at (∞, ∞, ∞, ∞, 1, 1):

𝜑RS ∶∶= ⟨𝛼⟩𝜑RS ∣ ⋀{𝜓RS, 𝜓RS, …}
𝜓RS ∶∶= 𝜓F ∣ 𝜑RS

2-nested simulation, 2S at (∞, ∞, ∞, ∞, ∞, 1):

𝜑2S ∶∶= ⟨𝛼⟩𝜑2S ∣ ⋀{𝜓2S, 𝜓2S, …}
𝜓2S ∶∶= ¬𝜑1S ∣ 𝜑2S

Bisimulation, B at (∞, ∞, ∞, ∞, ∞, ∞):

𝜑B ∶∶= ⟨𝛼⟩𝜑B ∣ ⋀{𝜓B, 𝜓B, …}
𝜓B ∶∶= ¬𝜑B ∣ 𝜑B

Figure 3.10: Grammars induced by coordinates for strong branching-time no-
tions of equivalence.

T′
�aa and T′

�a are simulation equivalent. But they are distinguished by the
failure-trace observation ⟨𝜏⟩ ⋀{⟨a⟩⟨a⟩, ¬⟨b⟩}. The intuition is that we can
observe the trace 𝜏aa together with the fact that b is impossible after a first
step of T′

�aa, but not of T′
�a.

The formula pricing works out, that is, ⟨𝜏⟩ ⋀{⟨a⟩⟨a⟩, ¬⟨b⟩} ∈
Ostrong

(3,1,2,0,1,1) ⊆ Ostrong
FT . The important point here is that we can allow

one arbitrarily deep positive conjunct but prevent any other, which would
undermine the trace-likeness of the observation.

Example 3.5 shows how it pays off that the spectrum grammar (Definition 3.7)
has a more lenient pricing for one of the positive conjuncts. We will refer to
the deep positive conjunct of a conjunction as the revival, because revivals
equivalence (Reed et al., 2007) is the minimal notion with this feature. It also
matters for ready traces, as seen in the ready trace formula of Figure 3.7.
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3.2.4 Any Questions?

There are a few standard questions that come to mind for people who are
familiar with the various spectra of equivalence when seeing Figure 3.8. The
following remarks address these points.
Remark 3.2 (Selection of notions). At the core, we treat the same notions as
van Glabbeek (1990). But we feature a slightly more modern selection.

Our spectrum additionally includes strong versions of impossible futures
(Voorhoeve & Mauw, 2001) and revivals (Reed et al., 2007; Roscoe, 2009) as
equivalences whose relevance has only been noted after the publication of
van Glabbeek (2001).

On the other hand, we glimpse over completed trace, completed simula-
tion, and possibleworlds observations like Kučera&Esparza (1999), who stud-
ied properties of “good” observation languages. These notions would need a
different HML grammar, featuring exhaustive conjunctions ⋀𝛼∈Act 𝜑𝛼, where
the 𝜑𝛼 are deactivated actions for completed traces, and more complex trees
for possible worlds.
Remark 3.3 (Synonymous coordinates). For many of the logics in Fig-
ure 3.8, there are multiple coordinates that characterize the same logic.
For instance, due to the second dimension (conjunctions) being set to 0
for traces T, the higher dimensions do not matter and any coordinate
𝑁 = (∞, 0, 𝑁3, 𝑁4, 𝑁5, 𝑁6) will lead to the same observation language
Ostrong

𝑁 = Ostrong
T .

Ruling out such equalities in the design of the lattice would be quite te-
dious. Luckily, Definition 3.5 only demands 𝑁 ≤ 𝑀 to imply O𝑁 ⊆ O𝑀 ,
and not the converse.

Indeed, Figure 3.8 always selects the least coordinate to characterize a
sublogic, in order for domination of coordinates in the figure and entailment
between behavioral preorders to coincide.

At the same time, some notions could be characterized by strictly smaller
coordinates due to sublogics of matching expressiveness. In particular, all
(∞, ∞, 𝑁3, 𝑁4, ∞, ∞) would characterize bisimilarity due to the unbounded
possibility of “hiding” positive conjuncts in double negations. This observa-
tion will become relevant again later for varying abstractions of bisimilarity
in the spectrum of weak equivalences in Section 6.3.2.
Remark 3.4 (Other coordinates). We have singled out a handful of coordi-
nates. Many other coordinates will still correspond to distinct equivalences.
For instance, we could consider 𝑁 2T = (2, 0, 0, 0, 0, 0), preordering states that
cannot be distinguished by traces up to a length of 2. But it is difficult to make
a case for such a “notion of equivalence,” which washes away differences of
future behavior after exactly two steps.

Some kinds of depth-bounded families, however, are common in the liter-
ature to approximate bisimilarity and can also be placed in our spectrum:

• 𝑘-step bisimilarity: (𝑘, ∞, ∞, ∞, ∞, ∞) is a depth-𝑘 approximation of
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bisimilarity that sometimes appears in its fixed point characterizations,
for instance in Aceto et al. (2007, Section 4.3).

• 𝑘-stratified bisimilarity: (∞, 𝑘, ∞, ∞, ∞, ∞) would be what Milner
(1989, Section 10.4) calls “stratification of bisimilarity,” also appearing
as “(𝑘 + 1)-nested trace equivalence” in Aceto et al. (2004).

• 𝑘-nested similarity: (∞, ∞, ∞, ∞, ∞, 𝑘 − 1) for 𝑘 > 1 defines a
spectrum of modal quantifier alternation depth between similarity and
bisimilarity.

Remark 3.5 (Alternate dimensions). In principle, one can choose different
dimensions to characterize the strong linear-time–branching-time spectrum.
(Indeed, Bisping et al. (2022), Bisping (2023b) and this thesis all use slightly
different dimensions.)

Naturally, one may ask whether the same spectrum can be characterized
with fewer than six dimensions. As some of the preceding examples also show,
the dimensions we chose are not entirely orthogonal.

If we restrict our focus to a grid of ternary entries {0, 1, ∞}, we can be
sure to need at least five dimensions: With four dimensions, the height of
the lattice is nine, that is, the maximal number of nodes on increasing paths
between (0, 0, 0, 0) and (∞, ∞, ∞, ∞). But the hierarchy of Figure 3.8 has
height ten!

With a grid of five ternary dimensions, we can recreate the hierarchy of
Figure 3.8, and “hard-code” the logics for coordinates, a bit as it happens in
Example 3.3. On the other hand, this would align less nicely with syntactic
features of Hennessy–Milner logic.
Remark 3.6 ((In-)finitary variants). One can introduce more dimensions to the
spectrumwith respect to the possibility of infinitary observations. Our choice
focuses on natural and most common versions of the equivalences, in partic-
ular: similarity and bisimilarity with unbounded (infinitary) branching and
trace-like notions with finitary depth. Notions in Figure 3.8 correspond pre-
cisely to those without superscripts in the infinitary linear-time–branching-
time spectrum of van Glabbeek (2001, Figure 9).

3.2.5 Non-Intersectionality

The strong spectrum of Definition 3.8 is much richer than the diamond
spectrum from Example 3.3. Still, its observation languages form no lattice.
For instance, the lines of simulation and failures join at ready simulation—
and their coordinates as well (∞, ∞, ∞, ∞, 0, 0) ⊔ (∞, 1, 0, 0, 1, 1) =
(∞, ∞, ∞, ∞, 1, 1). But Ostrong

S ∪ Ostrong
F ≠ Ostrong

RS and this makes a
difference:

Example 3.6 (Simulation + failures ≠ ready-simulation). Consider the CCS
processes a.(a.b + a) and a.a.b + a.a. They cannot be told apart by Ostrong

S
or Ostrong

F and thus are simulation and failure equivalent (and moreover even
ready-trace equivalent).
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Figure 3.11: A prism revealing the spectrum of
sun light.

Still, the formula ⟨a⟩ ⋀{⟨a⟩ ⋀{¬⟨b⟩}, ⟨a⟩⟨b⟩} ∈ Ostrong
RS distinguishes

the first process from the second. Therefore, the processes are not ready-
simulation equivalent.

What Example 3.6 shows is that one cannot prove two states to be ready-
simulation-equivalent by showing that they are equated by simulation and
failures:

∼S ∩ ∼F ⊈ ∼RS.
The relationship between the characterized equivalences is non-intersectional.

In general, multiple preorders may relate two states without this entailing
a stronger equivalence. So the question “Which equivalence from a spectrum
relates two states?” is too simple—one has to ask in plural: “Which equiva-
lences relate two processes?”

This plural motivates the spectroscopy problem.

3.3 Spectroscopy

Now that we have a formal way of describing equivalence spectra, we can
make formal the spectroscopy problem—the core topic of this thesis. We will
also collect first thoughts on its complexity.

3.3.1 The Spectroscopy Problem

The problem has originally been introduced in Bisping et al. (2022) as the “ab-
stract observation preorder problem” with respect to modal characterizations
of the strong spectrum. We here reintroduce it in a more generic form.

Problem 1: Spectroscopy problem

In the context of a transition system S and a spectrum (N, ≤,O𝑁∈N),
the spectroscopy problem asks:

Input States 𝑝 and 𝑞.
Output Maximal set of notions N𝑝,𝑞 ⊆ N, such that 𝑝 ⪯O𝑁

𝑞 for each
𝑁 ∈ N𝑝,𝑞.

Intuitively, the problem is about finding all the ways in which processes can
be related, beyond the black-and-white of the bisimilarity problem. We aim
to split up information on possible distinctions, analogously to a prism with
light (Figure 3.11). Given that the equivalence hierarchies are commonly re-
ferred to as spectra, it is natural to borrow the name spectroscopy from physical
experiments.

Example 3.7 (Warm-up spectroscopy). In Example 2.4, we have noticed that
it is easy to distinguish qab ⪯̸T pa through the 1-symbol-trace b. In HML, the
difference is expressed as ⟨b⟩⊤.
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The solution to the strong spectroscopy problem on qab and pa is

Nstrong
qab,pa = {𝑁 ∈ Nstrong ∣ 𝑁1 < 1}.

All notions thus characterized correspond to universal equivalence U in dis-
tinctiveness. In other words, the states are not equivalent with respect to any
notion where states are told apart at all. They are as different as possible, in
our metric.

Example 3.8 (The spectrum of trolled philosophers). For the “trolled philoso-
phers” of Example 2.7, we have determined that the systems are simulation-
preordered, but not bisimilar, that is, Q ⪯S T, but Q ⪯̸B T. The first fact
implies Q ⪯T T.

But what about other notions from the strong spectrum of Section 3.2.3?
Besides similarity, there might well be incomparable or finer notions that also
preorder Q to T!

The solution to the spectroscopy problem on Q and T is

Nstrong
Q,T = {𝑁 ∈ Nstrong ∣ (2, 2, 0, 0, 2, 2) ≰ 𝑁}.

A minimal formula to distinguish Q from T with coordinate (2, 2, 0, 0, 2, 2)
would be ⋀{¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤}}. (The following chapters will reveal how to
reliably arrive at this knowledge, in particular, the minimality.)

Figure 3.12 shows how the distinction is above the distinction spaces of
most notions we named.

Because the coordinate of 2-nested simulation, 2S = (∞, ∞, ∞, ∞, ∞, 1)
is not above (2, 2, 0, 0, 2, 2), we arrive at Q ⪯2S T, which implies all preorders
of Figure 3.8 except for bisimilarity.

Note thatwe have expressedNstrong
Q,T through a negation (“(2, 2, 0, 0, 2, 2) ≰

𝑁”). The reason is that a positive description is usually unwieldy. In this
(comparably easy) case, we could for example list the half-spaces un-
dercutting the cheapest distinction, and this would read: Nstrong

Q,T =
({0, 1}×ℕ5

∞)∪(ℕ∞ ×{0, 1}×ℕ4
∞)∪(ℕ4

∞ ×{0, 1}×ℕ∞)∪(ℕ5
∞ ×{0, 1}).

Technically, it is convenient to not compute N𝑝,𝑞 directly. Rather we aim to
construct the Pareto front of minimal notions that do not hold, Min(N∖N𝑝,𝑞).
The Pareto front serves as a unique representation, from which N𝑝,𝑞 can be
constructed as complement of the upward closureN∖ ↑ Min(N∖N𝑝,𝑞). Pareto
fronts form anti-chains and appear naturally in optimization problems.

All spectra we are concerned with are well-quasi ordered, which means
that each Min(N ∖ N𝑝,𝑞) must be finite in size (Kruskal, 1972) and thus “more
handy” than the full sets N𝑝,𝑞 or N ∖ N𝑝,𝑞.

So, effectively, we will be asking: What are the minimal notions to dis-
tinguish 𝑝 from 𝑞—and then often talk about the converse: The most-fitting
notions to preorder or equate the states. Everything else is implied.
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2-nested
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⋀{¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤}}

Figure 3.12: Cross section of the strong spectrum showing the dimensions
conjunctions, negative conjunct depth, and negation depth. All preorders that
are not hit by the red mark at (2, 2, 2) hold in Example 3.8.

Remark 3.7 (Infinitely many notions). The spectrum as formulated in Defini-
tion 3.7 contains infinitely many notions. This would be a problem in a naive
solution to Problem 1 that relies on deciding equivalences individually, but
will be no problem for us. Where we, however, assume finiteness for algo-
rithms, is in the state-space size of S .

3.3.2 Spectroscopy as Abstract Subtraction

Another way of viewing the spectroscopy problem is that we aim to compute
an abstracted kind of difference between programs.

Definition 3.9 (Observations and difference). On a transition system S , the
possible observations of a state, J⋅K ∶ P → 2HML, are defined as:

J𝑝K ≔ {𝜑 ∈ HML ∣ 𝑝 ∈ J𝜑K}.

The difference between 𝑝 and 𝑞 is defined as:

Δ(𝑝, 𝑞) ≔ J𝑝K ∖ J𝑞K .

Δ(𝑝, 𝑞) expresses the set of observations one could make of 𝑝 that one cannot
make of 𝑞. This set will be empty when the states are bisimilar, or infinite,
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71 Or O(|−→||𝑆/∼S |) to name the bound as Ran-
zato & Tapparo (2010) present it.

otherwise.
With this notation, we could rephrase how preorders derive from HML

subsets in Definition 2.13:

Proposition 3.1. Two states 𝑝 and 𝑞 are preordered with respect to a sublogic
O ⊆ HML:

𝑝 ⪯O 𝑞 ⟺ Δ(𝑝, 𝑞) ∩ O = ∅.

The spectroscopy problem then is about computing some abstraction Δ𝐴 such
that 𝑁 ∈ Δ𝐴(𝑝, 𝑞) precisely if Δ(𝑝, 𝑞) ∩ O𝑁 ≠ ∅. N𝑝,𝑞 plays the role of
Δ𝐴(𝑝, 𝑞).

This falls in line with our observations about the ≤-game on numbers in
Example 2.14 and (bi-)simulation games. Comparison is inherently linked to
subtraction.

3.3.3 Complexities

What complexities to expect when deciding spectroscopy problems on finite
systems? Details depend, of course, on the specific spectrum and flavor of
Hennessy–Milner logic we are concerned with. Still, solving the spectroscopy
problem cannot be easier than solving the covered individual equivalence
problems.

To get a first idea, let us examine the complexities of common equivalence
checking problems in the strong spectrum. The rule of thumb is that trace-like
equivalences are PSPACE-complete and bisimilarities are P-complete (Bal-
cázar et al., 1992; Hüttel & Shukla, 1996; Kanellakis & Smolka, 1983).

Bisimilarity finds itself in a valley of tractability, if we look at a cross sec-
tion through the equivalence spectrum as in Figure 3.13. The best known
bisimilarity algorithms for finite-state transition systems take O(|−→| log |P|)
time. They usually employ partition refinement (e.g. Valmari, 2009), deriving
from Paige & Tarjan (1987).

ID GI B S T E U
O(1)

O(|−→|)
O(|−→| log |P|)

O(|−→||P|)
2O((log𝑛)3)
PSPACE

Figure 3.13: Bisimilarity’s complexity valley.

For coarser simulation-like equivalences, the best known algorithms need
O(|−→||P|) time (Ranzato & Tapparo, 2010).71
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The finer graph-isomorphism equivalence (Definition 2.8) again is
harder with the best known solution (Babai, 2016) in quasi-polynomial time
2O((log𝑛)3).

There are few strict hardness results at this level of granularity. So,
better time complexities for graph isomorphism, bisimilarity, and similarity
are conceivable (albeit improbable). Groote et al. (2023) show that at
least partition-refinement algorithms for bisimilarity cannot do better than
O(|−→| log |P|). In a recent preprint, Groote & Martens (2024) establish that
similarity is strictly more complex than bisimilarity.

The trivial equivalences at the end of the cross section, identity ID and
universal equivalence U, can be solved directly. Enabledness equivalence E
can as well be computed quite quickly by just comparing outgoing transitions.

In this thesis, we solve the spectroscopy problem for the strong and weak
spectrum. So, we must be at least as complex as the equivalences between
bisimilarity and universal equivalence, boxed in Figure 3.13. Consequently,
the spectroscopy problem for the standard equivalence spectra is PSPACE-
hard.

3.4 Discussion

In this chapter, we have formalized how to handle spectra of equivalence
(Idea 4), and instantiated the approach to the strong spectrum of van
Glabbeek (2001). From there, we have introduced the spectroscopy problem,
which asks for notions to preorder compared states (Idea 1).

The shifted problem. By formulating the problem in terms of a lattice over
ℕ∞-vectors, the family of qualitative strong preorder/equivalence problems
becomes a single quantitative problem: The spectroscopy problem for the
strong spectrum. As we will see, the perspective of one quantitative prob-
lem is more insightful than the view of loosely-related, isolated equivalence
problems.

We have already laid the groundwork to shift the semantic question of
equivalence into a syntactic question of the shape of distinguishing formulas.

Prior publications. The core ideas of this section have already been explored
in Bisping et al. (2022) and Bisping (2023b) for the strong spectrum. However,
in my prior work the expressiveness prices played a more crucial role. Here,
we instead opted for a parameterized grammar to define notions and their
observationsO𝑁 . In this grammar, we count ⊤ as part of the 0-notion. These
are mostly superficial changes to streamline the following presentation. We
have shown that traces, failures, simulation and bisimulation equivalence as
defined by the notion coordinates match their textbook definitions. Mattes
(2024) addresses all notions in Isabelle/HOL.

What's next? So far, we have a problem and confidence that its solution
conveys information about equivalences of the strong spectrum. Section 3.3.3
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has established that spectroscopy complexity must be at least PSPACE on the
strong spectrum.

However, there is a polynomial-time-easy fragment of the spectrum
around bisimilarity and (ready) similarity. In Part II, comprising the next two
chapters, we will first solve the spectroscopy problem for this P-easy slice and
then extend to the whole strong spectrum. After that, we will also consider
the weak spectrum in Part III.
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4 Approach: Equivalence
Problems as Energy
Games

Related publications. This chapter revolves
around the ideas conveyed by my talk
“Deciding all behavioral equivalences at once
through energy games” at D-CON’25
(Augsburg, 2025-03), and by its predecessors
given at LFCS University of Edinburgh
(2023-03), Highlights’23 (Kassel, 2023-07), and
ISCAS Beijing (2024-09). It can be thought of
as the core of Bisping (2023b), and also of this
thesis itself.

Time to get real. This chapter will demonstrate my core approach by solving
the spectroscopy problem in an easy instance.

It will be easy in two regards: Firstly, complexity-wise—we narrow our
focus on equivalences of polynomial-time, the “P-easy ones.” Secondly,
conceptually—we just use the bisimulation game of Chapter 2, almost
directly!

We already know fromTheorem 2.3 that winning attacker strategies in the
bisimulation game correspond to distinguishing formulas, and that these can
be computed quite straightforwardly. All we need on top of this is a way of
quantifying the amount of syntactic expressiveness in these formulas during
the game. For this, we employ the first core idea of this chapter:

Idea 6: Quantitative games for quantitative problems

Spectra of equivalence problems can be encoded as energy games.

Energy games are games in which players have limited resources that can be
used up or recharged duringmoves. Players running out of a resource lose the
game. After introducing such games in Section 4.1, wewill prove in Section 4.2
that several core equivalences can be characterized through attacker energy
budgets where the defender wins. Energies in the game will correspond to
notions in the spectrum. For this, we will add three-dimensional energies to
the bisimulation game.

The second core idea is how to compute these winning budgets for players:

Idea 7: Computing cheapest wins

Attacker’s winning budgets in energy reachability games can be com-
puted by a generalized shortest paths algorithm.

Section 4.3 provides an algorithm to solve a range of energy-game-like quanti-
tative problems as long as the energy updates can be undone through a Galois
connection—a generalization of invertibility on monotonic functions.



66 Chapter 4. Approach: Equivalence Problems as Energy Games

States 𝑝, 𝑞 in
transition system S

Polynomial notions that fit
to preorder 𝑝 to 𝑞

Bisimulation
energy game G S

B

Minimal attacker winning
budgets Winmin

a ([𝑝, 𝑞])

Spectroscopy problem
Problem 1

Def. 4.8 Thm. 4.1 XOR

Algorithm 2.1
Problem 2

Chapter 3

Section 4.2

Section 4.3

Figure 4.1: How we will employ energy games to solve the spectroscopy problem on an easy spectrum.

By combining the two contributions, we arrive at a polynomial-time solu-
tion of the spectroscopy problem for the P-easy slice of the strong spectrum.

Effectively, we adapt the game framework of Figure 2.18 to not treat one
equivalence, but a spectrum of equivalences. This approach is summarized in
Figure 4.1.

4.1 Energy Games

Energy games extend games as discussed in Section 2.4 with resources of the
players, called energies. We will focus on reachability games with an energy-
bounded attacker. In most publications, energy games update vector-valued
energy levels by vector addition or subtraction. We work with more general
monotonic energy games (Section 4.1.1) and then zoom in on declining energy
games (Section 4.1.2), which include updates that combine vector components
by taking their minimum. The latter are exactly what we need for the subse-
quent Section 4.2.

4.1.1 Monotonic Energy Games

To introduce energy games, we generalize the definitions on games (Defini-
tion 2.17 and the following) to include energy levels. Wemove beyondwinning
regions by defining quantitative winning budgets, which can still be charac-
terized inductively.

Definition 4.1 (Energy reachability game). Given a partially ordered
set of energies (E , ≤), an energy reachability game G is a reachabil-
ity game (𝐺, 𝐺d, ) extended by an edge labeling of energy updates
upd ∶ ( ) → ({⊥} ∪ E) → ({⊥} ∪ E). We demand energy games to be
monotonic in the following sense:

• ⊥ ∉ E is final in the sense that upd(𝑚)(⊥) = ⊥ for 𝑚 ∈ .
• All update functions 𝑢 = upd(𝑚) with 𝑚 ∈ are monotonic and
upward-closed with respect to ≤. More formally, this means that for
any energies 𝑒, 𝑒′ ∈ E , if 𝑒 ∈ dom(𝑢) and 𝑒 ≤ 𝑒′, then 𝑒′ ∈ dom(𝑢)
and 𝑢(𝑒) ≤ 𝑢(𝑒′), where dom(𝑢) ≔ {𝑒 ∈ E ∣ 𝑢(𝑒) ≠ ⊥}.



4.1. Energy Games 67

Definition 4.2 (Energy level as objective). For a finite play 𝜌 = 𝑔0𝑔1…𝑔𝑛−1 ∈
𝐺∗ of G , starting from position 𝑔0 with energy 𝑒0 ∈ E , the energy level EL(𝜌)
is computed recursively:

• EL(𝑔0) ≔ 𝑒0
• EL(𝑔0…𝑔𝑖+1) ≔ upd(𝑔𝑖, 𝑔𝑖+1)(EL(𝑔0…𝑔𝑖))

For infinite plays 𝜌 ∈ 𝐺𝜔, we define energy levels to equal ⊥.
We consider the attacker to be energy-bounded and understand EL(𝜌) =

⊥ to mean that they have run out of energy. Thus, we declare plays with
EL(𝜌) = ⊥ to be won by the defender (even if they are stuck).

Strategies and winning strategies work exactly as in the energy-less scenario.
Additionally, we lift positional strategies of Definition 2.19 to be energy-
positional in the sense that they pick next moves depending on the current
energy level, i.e. 𝑠a ∶ 𝐺a × E → 𝐺.

Generalizing the concept of winning regions as in Definition 2.20, we de-
fine winning budgets for game positions with overloaded notation:

Definition 4.3 (Winning budgets). For each position 𝑔0 ∈ 𝐺 of energy game
G , the attacker winning budgets, WinG

a (𝑔0) ⊆ E are the energies 𝑒0 where
the attacker wins G from 𝑔0 with 𝑒0. The defender winning budgets WinG

d
are defined analogously.

In the context of a game, we write the shorthand Winmin
a for minimal at-

tacker winning budgets, Winmin
a (𝑔0) ≔ Min(Wina(𝑔0)).

Classical energy games use ℕ-vectors for energies and ℤ-vector addition for
updates as in the following example:

Example 4.1 (A simple energy game). Consider vector energies E = ℕ2 with
pointwise order and the energy game with graph as in Figure 4.2. Edges are
labeled by update vectors ⃗𝑢 ∈ ℤ2, each representing an update function

𝑒 ↦ {𝑒 + ⃗𝑢 if 𝑒 + ⃗𝑢 ≥ 0

⊥ otherwise.

How can the attacker win from g1?
All attacker-won plays must end in g6 to get the defender stuck.
For instance, the attacker cannot win from g1 with (0, 0). All outgoing

paths would lead to ⊥-energy and thus to the defender winning, before the
game can reach g6.

But if the attacker starts with budget (0, 2), they can take the upper path to
g4 with energy (2, 1), from where both defender options lead to the defender
being stuck in g6.

Also, if the attacker starts with (2, 1), they win through the lower g3-path.
Moving to g4 directly, would be more expensive than the g2/g3-

alternatives—so we can disregard this option in the monotonic context.
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Figure 4.2: Simple energy game of Example 4.1.

(0, 2)

(2, 1)

Figure 4.3: Attacker’s Pareto front for g1 of ex-
ample energy game.

72 This is formalized as Lemma 3.2 in Lemke
(2024).

73 This is formalized as Corollary 3.1 in Lemke
(2024).

74 Proved as Theorem 3 in Lemke (2024).

Starting with less energy means that the defender has an option of
bankrupting the attacker at g4 (or before).

Summing up our observations, (0, 2) and (2, 1) define a Pareto front of
minimal budgets where the attacker wins from g1, as depicted in Figure 4.3.
The attacker and defender winning budgets of individual positions are also
visualized by red and blue areas in Figure 4.2.

We can notice two things from the example:

1. A purely positional strategy would not suffice for the defender to win re-
liably at g4. Say the game starts with energy (1, 1), that is, with a budget
where the defender should win. Then, the level will either be (0, 1) or
(3, 0) at g4. The defender has to either move to g5 or g6, depending on
the play so far. So, either the defender must know the history, or at
least the current energy level to make an ideal decision.

2. Attacker’s winning budgets are upward-closed, and defender budgets are
downward-closed.

Both are effects of Definition 4.1. More formally, the winning budgets are
characterized by the following two propositions:

Proposition 4.1 (Upward closure of attacker budgets). Given an energy game
G, the attacker winning budgets WinG

a are pointwise upward-closed, that is,
↑ WinG

a (𝑔) = WinG
a (𝑔) for all positions 𝑔 ∈ 𝐺.72

Proposition 4.2 (Winning budget determinacy). Given an energy game G, at-
tacker budgets at a position 𝑔 are attacker-winning if they are not defender-
winning, and vice-versa:73

WinG
a (𝑔) = E ∖ WinG

d (𝑔)

WinG
d (𝑔) = E ∖ WinG

a (𝑔)

Proposition 4.3 (Inductive budgets). Given an energy game G, the attacker
winning budgets WinG

a are characterized inductively by the following rules:74
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75 By the way, to those wondering: It is in-
tentional that this thesis aims to achieve all
its constructions without recurring to coinduc-
tion. Therefore, coinduction is only mentioned
in side remarks and is not required to under-
stand what is going on.

76 Lemma 3.4 in Lemke (2024).

𝑔a ∈ 𝐺a 𝑔a 𝑔′ upd(𝑔a, 𝑔′)(𝑒) ∈ WinG
a (𝑔′)

𝑒 ∈ WinG
a (𝑔a)

𝑔d ∈ 𝐺d ∀𝑢, 𝑔′. 𝑔d 𝑔′ ⟶ upd(𝑔d, 𝑔′)(𝑒) ∈ WinG
a (𝑔′)

𝑒 ∈ WinG
a (𝑔d)

The inductive definition is nice as it allows for local proofs of how the attacker
wins. Defender’s wins on the other handwould dually be a coinductive concept
because the defender wins loops.75

The proofs in Lemke (2024) partially rely on the fact that one can derive
reachability games from energy games, by inlining the energies and having
the attacker stuck at exhausted energies.

Definition 4.4 (Derived reachability game). Given an energy game
G = (𝐺, 𝐺d, , upd) over (E , ≤), the derived reachability game G𝑅 =
(𝐺𝑅, 𝐺𝑅

d , 𝑅) is played on tuples 𝐺𝑅 ≔ 𝐺×(E ∪{⊥}) with 𝐺𝑅
d ≔ 𝐺d ×E .

Lifted moves (𝑔, 𝑒) 𝑅 (𝑔′, 𝑒′) are possible iff 𝑒 ≠ ⊥, 𝑔 𝑔′, and
𝑒′ = upd(𝑔, 𝑔′)(𝑒).

Note the fine point that positions of exhausted energy that derive from de-
fender positions are transformed to stuck attacker positions!

Winning regions of the reachability game and winning budgets of the en-
ergy game correspond.

Proposition 4.4 (Derived wins). (𝑔, 𝑒) ∈ WinG𝑅

a precisely if 𝑒 ∈ WinG
a (𝑔).76

Remark 4.1 (Generalized reachability). Ordinary reachability games can be
seen as a special case of energy games with trivial energies, e.g. E = {1} and
upd(⋅) = idE . On such games, G and G𝑅 according to Definition 4.4 have
isomorphic game graphs.
Remark 4.2 (Our flavor of energy games). We deviate in two important points
from other work on energy games:

• In the literature, it is more common to consider the defender instead of
the attacker to be energy-bounded (e.g. Fahrenberg et al., 2011). This
choice follows the intuition that there is a party with scarce resources
that wants to keep the system running. For our purposes however, we
want to bound the resources of an attacker, which is no fundamental
change. Still, one cannot have both at the same time: Kupferman &
Shamash Halevy (2022), studying both-bounded energy games, estab-
lish that their winner for a given energy is only decidable if both parties
have only one-dimensional energies.

• We define energy-reachability games more abstractly than is common:
In other publications, energy gameswork on numbers with component-
wise updates as seen in Example 4.1. We do not demand this as, in the
next sections, we will need updates that combine information from dif-
ferent components of the energy vector. Even prior generalizations on
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Figure 4.4: The author, illustrating multi-dim-
ensional energy updates on declining games to
the audience of CAV’23.
(Photo: Fei Bian)

energy update functions such as Ésik et al. (2013) do not allow sufficient
flexibility in this regard.

4.1.2 Declining Energy Games

We now turn to a special kind of energy games (introduced by Bisping, 2023b)
with vector-valued energy levels where updates will never increase energy
levels in any component. A 𝑑-dimensional declining energy game is played on
energy vectors:

Definition 4.5 (Energies and energy updates). For dimensionality 𝑑, the set
of energies, En, is given by ℕ𝑑

∞. Energies are compared by ≤ pointwise (cf.
Example 3.2).

The set of energy update labels, Up, contains (𝑢1, … , 𝑢𝑑) ∈ Up where each
component 𝑢𝑘 is a symbol of the form

• 𝑢𝑘 ∈ {−1, 0} (relative update), or
• 𝑢𝑘 = min𝐷 where 𝐷 ⊆ {1, … , 𝑑} and 𝑘 ∈ 𝐷 (minimum selection up-

date).

Applying an update to an energy, upd(𝑢, 𝑒), where 𝑒 = (𝑒1, … , 𝑒𝑑) ∈ En and
𝑢 = (𝑢1, … , 𝑢𝑑) ∈ Up, yields a new energy vector 𝑒′ where 𝑘th components
are given by

• 𝑒′
𝑘 ≔ 𝑒𝑘 + 𝑢𝑘 for 𝑢𝑘 ∈ {−1, 0} and

• 𝑒′
𝑘 ≔ min𝑑∈𝐷 𝑒𝑑 for 𝑢𝑘 = min𝐷.

Updates that would cause any component to become negative yield ⊥.

Example 4.2 (Energy updates). Consider the update label (min{1,2}, 0, −1).
• upd((min{1,2}, 0, −1), (1, 1, 0)) equals ⊥ because of the last component.
• upd((min{1,2}, 0, −1), (2, 1, 1)) equals (1, 1, 0).
• upd((min{1,2}, 0, −1), (1, 1, 1)) equals (1, 1, 0), as well.
• There is no 𝑒 ∈ En such that upd((min{1,2}, 0, −1), 𝑒) = (1, 0, 0), be-
cause the second component would demand a lower first component.

In summary, upd((min{1,2}, 0, −1), ⋅) is neither injective nor surjective with
respect to En. The same is true for most other 𝑢 and upd(𝑢, ⋅) with a min-
update component.

Definition 4.6 (Declining energy game). Given a weight labeling 𝑤∶ ( ) →
Up, a 𝑑-dimensional declining energy game G is an energy reachability game
with energies E ≔ En and with edges labeled upd(𝑚) ≔ upd(𝑤(𝑚), ⋅).

We write 𝑔 𝑢 𝑔′ for a move 𝑔 𝑔′ labeled by weight 𝑤(𝑔, 𝑔′) = 𝑢.
Declining energy games differ from more common energy games with vector
addition updates as seen in Example 4.1 due to the non-invertibility of updates
we encountered in Example 4.2.

We will use our new energy games to characterize not just single behav-
ioral equivalences, but whole spectra of them.
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4.2 Characterizing theP-easy Part of the Spectrum

As hinted at in Section 3.3.3, parts of the strong equivalence spectrum can
be decided in polynomial time, whereas others require polynomial space (and
thus effectively exponential time). Thanks to declining energy games, we can
adapt the standard bisimulation game of Definition 2.22 to decide not just
bisimulation, but all polynomial-time-easy equivalences of the strong spec-
trum at once.

4.2.1 The P-easy Slice

First, let us make explicit which equivalences we include in the polynomial-
time slice of the spectrum. (The fact that they indeed can be decided efficiently
is mostly well-known, but also itself a corollary of this section.)

To define the P-easy slice, we only use three dimensions:

1. modal depth,
2. depth of negative conjuncts, and
3. nesting depth of negations.

These are the first, fifth and sixth dimension of the strong spectrum in Def-
inition 3.7. Components for other dimensions of the strong spectrum of the
previous chapter are effectively set to ∞.

Definition 4.7 (P-easy strong spectrum). Wedenote asP-easy strong spectrum
the projection of the strong spectrum (Definition 3.7) to the first, fifth, and
sixth dimension, thus by notions

Npeasy ≔ ℕ3
∞,

and the family of strong observation languages

Opeasy
(𝑁1,𝑁2,𝑁3)∈Npeasy ≔ Ostrong

(𝑁1,∞,∞,∞,𝑁2,𝑁3).

In effect, O𝑁∈Npeasy can be characterized by 𝜑𝑁 in the following grammar:

𝜑𝑁 ∶∶= ⊤
∣ ⟨𝛼⟩𝜑𝑁−ê1

∣ ⋀{𝜓𝑁 , 𝜓𝑁 , 𝜓𝑁 …}
𝜓𝑁 ∶∶= ⟨𝛼⟩𝜑𝑁−ê1

∣ ¬⟨𝛼⟩𝜑(𝑁⊓(𝑁2,∞,∞))−ê1−ê3

Figure 4.5 gives names to coordinates that correspond to notions discussed
previously.

Except for enabledness, E, all coordinates in Figure 4.5, after unfolding
them for Nstrong, are identical to the ones used previously. When one
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bisimulation B
∞, ∞, ∞

𝑘-step bisimulation 𝑘B
𝑘, ∞, ∞

𝑘-nested simulation 𝑘S
∞, ∞, 𝑘 − 1

ready simulation RS
∞, 1, 1

simulation 1S
∞, 0, 0

enabledness E
1, 0, 0

Figure 4.5: Hierarchy of polynomial-time decidable equivalences/preorders.

77 lemma Priced_Spectrum.lts.enabledness
_conjunctions_are_neutral

78 We cannot hope to count the other dimen-
sions of Definition 3.7: The bisimulation game
washes away the amount of necessary conjunc-
tions as its HML has conjunctions under each
observation, even though they might not be
necessary for a distinguishing formula.

unfolds the coordinate for enabledness (1, 0, 0) to the original strong sys-
tem, (1, ∞, ∞, ∞, 0, 0), it differs from the one previously used, namely,
(1, 0, 0, 0, 0, 0). The characterized language is strictly more expressive, as it
contains conjunctions of enabled actions (e.g. ⋀{⟨a⟩, ⟨b⟩}), but it is equally
distinctive.77

4.2.2 The Bisimulation Energy Game

Let us upgrade the bisimulation game GB of Definition 2.22 with energies. The
claim is that the resulting game GB will characterize all equivalences of the
P-easy strong spectrum in the sense that 𝑝 ⪯O𝑁

𝑞 for 𝑁 ∈ Npeasy precisely if
the defender wins GB when the attacker starts from [𝑝, 𝑞] with budget 𝑒 = 𝑁 .

As we have seen in Section 2.4.5, the game moves match the distinctive
power of productions in the O⌊B⌋-grammar of Definition 2.16. Consequently,
we can count the use of HML constructs in the game. As the game stands, we
can meaningfully count the three dimensions used in Section 4.2.1.78

We add the computations that happen in the grammar of Definition 4.7 as
energy updates to the bisimulation game and obtain:

Definition 4.8 (Bisimulation energy game). For a transition system S , the
bisimulation energy game G S

B is played on the same graph as the bisimulation
game GS

B (of Definition 2.22), but the moves are weighted by the following
energy updates:

• Attacker simulation challenges count as an observation (using up the
budget for modal depth):

[𝑝, 𝑞] −1,0,0
B (𝛼, 𝑝′, 𝑞) if 𝑝 𝛼−→ 𝑝′.

https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.enabledness_conjunctions_are_neutral%7Cfact
https://benkeks.github.io/ltbt-spectroscopy-isabelle/AFP/Lineartime_Branchingtime_Spectrum_I/Priced_Spectrum.html#Priced_Spectrum.lts.enabledness_conjunctions_are_neutral%7Cfact
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[𝑝, 𝑞] (𝛼, 𝑝′, 𝑞) [𝑝′, 𝑞′]

[𝑞, 𝑝]

𝑝 𝛼−→ 𝑝′

−1, 0, 0

min{1,2}, 0, −1

𝑞 𝛼−→ 𝑞′

0, 0, 0

Figure 4.6: Game scheme of the bisimulation energy game with energy up-
dates (Definition 4.8).

(2, 2, 2)

Figure 4.8: Attacker’s 3D Pareto front for [Q, T]
of the example bisimulation energy game.

• Attacker swaps are counted as a negation and limit the further obser-
vations to the depth of negative conjuncts:

[𝑝, 𝑞] min{1,2},0,−1
B [𝑞, 𝑝].

• And defender answers come for free:

(𝛼, 𝑝′, 𝑞) 0,0,0
B [𝑝′, 𝑞′] if 𝑞 𝛼−→ 𝑞′.

Figure 4.6 visualizes the scheme of game rules, differing from Figure 2.13 only
through energy updates.

The first dimension thus bounds how often the attacker may challenge
simulation down the road, the third limits how often they may swap sides,
and the middle dimension bounds the amount of simulation moves after a
swap.

Example 4.3. Let us label the bisimulation game of Example 2.18 (distinguish-
ing the “trolled philosophers”) with energy updates. Figure 4.7 shows the
game graph, also exhibiting the cheapest formulas with regards to the poly-
nomial spectrum that correspond to attacker winning strategies.

The attacker wins GB from [Q, T] if they start out with an energy budget of
(2, 2, 2) or above. This space is visualized in Figure 4.8. But if the budget does
not dominate this bound, the attacker loses. For instance, neither (1, ∞, ∞)
nor (∞, ∞, 1) is enough. The bound implies that the budgets, (∞, 1, 1) and
(∞, 0, 0) are won by the defender as well.

On the game side, this tells us that the attacker needs at least two simula-
tion moves (after swaps) and two swaps to tell Q apart from T. Telling apart
T from Q is slightly easier, only requiring one swap (and only one simulation
move after the swap).

But, due to the correspondence of the game to modal formulas and of
the energy updates to the pricing of formulas in the spectrum, the attacker
winning budgets tell us more: They reveal that one needs two observations
and two (or more) negations to distinguish Q from T using formulas from
O⌊B⌋.

Thus,Npeasy
Q,T = {𝑁 ∈ Npeasy ∣ (2, 2, 2) ≰ 𝑁} is the solution for the (P-easy
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[Q, T]

⋀{¬⟨𝜏⟩ ⋀{¬⟨a⟩⊤}} ∈ Opeasy
(2,2,2)

[T, Q]

⟨𝜏⟩ ⋀{¬⟨a⟩⊤} ∈ Opeasy
(2,1,1)

(𝜏, qab, T)

defender
wins

[qab, ]

⟨a⟩⊤ ∈ Opeasy
(1,0,0) (a, q1, )

(b, q2, )

(𝜏 , tab, Q)

(𝜏, , Q)

[ , qab]

⋀{¬⟨a⟩⊤} ∈ Opeasy
(1,1,1)

min{1,2}, 0, −1

−1, 0, 0

min{1,2}, 0, −1

0,0,0

0,0,0

min{1,2}, 0, −1

−1, 0, 0
−1, 0, 0

0, 0, 0

0, 0, 0

−1, 0, 0

−1, 0, 0

Figure 4.7: The bisimulation energy game of Example 4.3 with energy updates and implied formulas. Color
of node backgrounds suggests the winning budgets of attacker (red) and defender (blue) in first and second
dimension per position.

strong) spectroscopy problem. Q is preordered to T by 2-nested simulation,
1-step bisimulation, and all notions below; but distinguished by all above, in
particular, 3-nested simulation and 2-step bisimulation.

This is in line with the solution we thought of for the original strong spec-
trum in Example 3.8.

4.2.3 Correctness of Characterization

We now prove that the bisimulation energy game indeed characterizes the
equivalences of the P-easy strong spectrum. The section’s proofs give the
blueprint for proofs of stronger results for more general games in upcoming
chapters.

The approach is to generalize the connection betweenwinning attacks and
distinguishing formulas in the bisimulation game. We have already explored
this connection of strategies and logic in Lemma 2.9 and Lemma 2.10 and
now extend it to energies and spectrum. One can say that the following is
an “energized” version of Section 2.4.5. We show correspondence between
notions and energies, N ∋ 𝑁 = 𝑒 ∈ En.

Definition 4.9 (Strategy formulas for GB ). The set of strategy formulas for a
game position 𝑔 and a budget 𝑒, StratB(𝑔, 𝑒), in the context of a bisimulation
energy game G S

B is defined inductively by the rules in Figure 4.9.

Effectively, this definition generalizes the construction of distinguishing for-
mulas on GB we have introduced in Lemma 2.9. Therefore, the formulas we
encountered before also serve as examples of such strategy formulas.
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observation
[𝑝, 𝑞] −1,0,0

B (𝛼, 𝑝′, 𝑞) 𝑒′ = upd((−1, 0, 0), 𝑒) ∈ WinGB
a ((𝛼, 𝑝′, 𝑞)) 𝜑 ∈ StratB((𝛼, 𝑝′, 𝑞), 𝑒′)

(⟨𝛼⟩𝜑) ∈ StratB([𝑝, 𝑞], 𝑒)

conjunction
∀𝑞′ ∈ Der(𝑞, 𝛼). (𝛼, 𝑝′, 𝑞) 0,0,0

B [𝑝′, 𝑞′] ∧ 𝑒 ∈ WinGB
a ([𝑝′, 𝑞′]) ∧ 𝜓𝑞′ ∈ StratB([𝑝′, 𝑞′], 𝑒)

(⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) ∈ StratB((𝛼, 𝑝′, 𝑞), 𝑒)

negation
[𝑝, 𝑞] min{1,2},0,−1

B [𝑞, 𝑝] 𝑒′ = upd((min{1,2}, 0, −1), 𝑒) ∈ WinGB
a ([𝑞, 𝑝]) ⟨𝛼⟩𝜑 ∈ StratB([𝑞, 𝑝], 𝑒′)

(¬⟨𝛼⟩𝜑) ∈ StratB([𝑝, 𝑞], 𝑒)

Figure 4.9: Rules to derive cheap distinguishing formulas from attacker winning budgets.

The general design principle for the construction of strategy formulas as
in Definition 4.9 is that each rule either corresponds to a kind of attacker
move (observation/simulation, negation/swap) or a kind of defender position
(conjunction).

Lemma 4.1 (Distinction soundness). If 𝑒 ∈ WinGB
a ([𝑝, 𝑞]), then there is 𝜑 ∈

StratB([𝑝, 𝑞], 𝑒) with 𝜑 ∈ Opeasy
𝑒 , 𝑝 ∈ J𝜑K and 𝑞 ∉ J𝜑K.

Proof. We prove the following (more general) property by induction.

1. If 𝑒 ∈ WinGB
a ([𝑝, 𝑞]), then there is 𝜓 ∈ StratB([𝑝, 𝑞], 𝑒) of form 𝜓 =

⟨𝛼⟩𝜑′ or ¬⟨𝛼⟩𝜑′ with ⋀{𝜓} ∈ Opeasy
𝑒 , 𝑝 ∈ J𝜓K and 𝑞 ∉ J𝜓K.

2. If 𝑒 ∈ WinGB
a ((𝛼, 𝑝′, 𝑞)), then there is 𝜑 ∈ StratB((𝛼, 𝑝′, 𝑞), 𝑒) of form

𝜑 = ⋀ Ψ with 𝜑 ∈ Opeasy
𝑒 , 𝑝′ ∈ J𝜑K and 𝑞 ∉ J⟨𝛼⟩𝜑K.

Proof by induction on the inductive characterizations of attacker winning
budgets (Proposition 4.3).

1. Assume 𝑒 ∈ WinGB
a ([𝑝, 𝑞]). This must be due to one of the following

moves:

• Case [𝑝, 𝑞] B [𝑞, 𝑝]
with 𝑒′ = upd((min{1,2}, 0, −1), 𝑒) ∈ Wina([𝑞, 𝑝]). By induction
hypothesis on [𝑞, 𝑝], there is 𝜓 ∈ StratB([𝑞, 𝑝], 𝑒′) with ⋀{𝜓} ∈
Opeasy

𝑒′ , 𝑞 ∈ J𝜓K and 𝑝 ∉ J𝜓K. Consider the possible forms of 𝜓:
– 𝜓 = ⟨𝛼⟩𝜑′. By Definition 4.9 of StratB, we obtain ¬⟨𝛼⟩𝜑′ ∈

StratB([𝑝, 𝑞], 𝑒). Because of the semantics of HML, ¬⟨𝛼⟩𝜑′

must distinguish 𝑝 from 𝑞. Also, ⋀{¬⟨𝛼⟩𝜑′} ∈ Opeasy
𝑒 , by

the calculations of the grammar in Definition 4.7.
– 𝜓 = ¬⟨𝛼⟩𝜑′. This can only be in StratB([𝑞, 𝑝], 𝑒′) due

to ⟨𝛼⟩𝜑′ being in StratB([𝑝, 𝑞], upd((min{1,2}, 0, −1), 𝑒′)).
Clearly, ⟨𝛼⟩𝜑′ must distinguish 𝑝 from 𝑞 and ⋀{⟨𝛼⟩𝜑′} ∈
Opeasy

𝑒 .
• Case [𝑝, 𝑞] B (𝛼, 𝑝′, 𝑞)
with 𝑝 𝛼−→ 𝑝′ and 𝑒′ = upd((−1, 0, 0), 𝑒) ∈ Wina((𝛼, 𝑝′, 𝑞)).
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By induction hypothesis on (𝛼, 𝑝′, 𝑞), there is ⋀ Ψ ∈
StratB((𝛼, 𝑝′, 𝑞), 𝑒′) and ⋀ Ψ ∈ Opeasy

𝑒′ with 𝑝′ ∈ J⋀ ΨK
and 𝑞 ∉ J⟨𝛼⟩ ⋀ ΨK. By Definition 4.9, we obtain ⟨𝛼⟩ ⋀ Ψ ∈
StratB([𝑝, 𝑞], 𝑒). Due to the semantics of HML and 𝑝 𝛼−→ 𝑝′, 𝑝 ∈J⟨𝛼⟩ ⋀ ΨK, thus distinguishing 𝑝 from 𝑞. Also, ⟨𝛼⟩ ⋀ Ψ ∈ Opeasy

𝑒
as ⋀ Ψ ∈ Opeasy

𝑒−ê1
.

2. Assume 𝑒 ∈ WinGB
a ((𝛼, 𝑝′, 𝑞)). This means that 𝑒 suffices for the at-

tacker to win every move (𝛼, 𝑝′, 𝑞) B [𝑝′, 𝑞′] with 𝑞 𝛼−→ 𝑞′ that
the defender might take, with 𝑒 ∈ Wina([𝑝′, 𝑞′]). For each 𝑞′, we
employ the induction hypothesis to obtain 𝜓𝑞′ ∈ StratB([𝑝′, 𝑞′], 𝑒) of
form 𝜓𝑞′ = ⟨𝛼⟩𝜑′ or ¬⟨𝛼⟩𝜑′ with ⋀{𝜓𝑞′} ∈ Opeasy

𝑒 , 𝑝′ ∈ J𝜓𝑞′K and
𝑞′ ∉ J𝜓𝑞′K. By Definition 4.9, (⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) ∈ StratB((𝛼, 𝑝′, 𝑞), 𝑒).
By the HML semantics, (⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) must be true for 𝑝′, and also
taking the semantics of observation, ⟨𝛼⟩(⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) false for 𝑞.
Moreover, (⋀𝑞′∈Der(𝑞,𝛼) 𝜓𝑞′) ∈ Opeasy

𝑒 by the grammar.

We have thus established how to connect from energies to notions through
formulas. Now let us link back.

Lemma 4.2 (Distinction completeness). If there is 𝜑 ∈ Opeasy
𝑁 with 𝑝 ∈ J𝜑K

and 𝑞 ∉ J𝜑K, then 𝑁 ∈ WinGB
a ([𝑝, 𝑞]).

Proof. By induction on the grammar of Opeasy
𝑁 .

Consider the cases of 𝜑 ∈ Opeasy
𝑁 with 𝑝 ∈ J𝜑K and 𝑞 ∉ J𝜑K.

• 𝜑 = ⊤. This cannot be the case as 𝑞 ∉ J𝜑K and J⊤K = P .
• 𝜑 = ⟨𝛼⟩𝜑′ with 𝜑′ ∈ Opeasy

𝑁−ê1
. As 𝜑 distinguishes 𝑝 from 𝑞, there must

be a 𝑝′ ∈ J𝜑′K such that 𝑝 𝛼−→ 𝑝′ and, for all 𝑞′ ∈ Der(𝑞, 𝛼), 𝑞′ ∉J𝜑′K. Due to the induction hypothesis, 𝑁 − ê1 ∈ Wina([𝑝′, 𝑞′]) for all
such 𝑞′ ∈ Der(𝑞, 𝛼). Therefore, 𝑁 − ê1 ∈ Wina((𝛼, 𝑝′, 𝑞)). As the
attacker can move [𝑝, 𝑞] −ê1 (𝛼, 𝑝′, 𝑞), this proves 𝑁 ∈ Wina([𝑝, 𝑞]) by
Proposition 4.3.

• 𝜑 = ⋀ Ψ one of the 𝜓 ∈ Ψ must be false for 𝑞. As the grammar does
not affect 𝑁 for 𝜓, we know ⋀{𝜓} ∈ Opeasy

𝑁 . Consider the possible
forms of 𝜓:

– Case 𝜓 = ⟨𝛼⟩𝜑′ with 𝜑′ ∈ Opeasy
𝑁−ê1

. Then we can apply the
same argument as in the case of 𝜑 = ⟨𝛼⟩𝜑′ to infer that 𝑁 ∈
Wina([𝑝, 𝑞]).

– Case 𝜓 = ¬⟨𝛼⟩𝜑′ with 𝜑′ ∈ Opeasy
(𝑁⊓(𝑁2,∞,∞))−ê1−ê3

. Therefore,
⟨𝛼⟩𝜑′ ∈ Opeasy

(𝑁⊓(𝑁2,∞,∞))−ê3
distinguishes 𝑞 from 𝑝. This time, we

can employ the same argument as in the case of 𝜑 = ⟨𝛼⟩𝜑′ to
obtain that (𝑁 ⊓ (𝑁2, ∞, ∞)) − ê3 ∈ Wina([𝑞, 𝑝]). The move
[𝑝, 𝑞] min{1,2},0,−1

B [𝑞, 𝑝] and upd((min{1,2}, 0, −1), 𝑁) = (𝑁 ⊓
(𝑁2, ∞, ∞)) − ê3 justify that 𝑁 ∈ Wina([𝑝, 𝑞]).
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The crucial trick here has been that one does not need all conjuncts of a con-
junction to establish a distinction and that focusing on parts can be donewith-
out leaving O𝑁 .

Combining Lemma 4.1 with Lemma 4.2, and taking the defender perspec-
tive, we immediately get:

Theorem 4.1 (Npeasy-characterization). 𝑝 ⪯O𝑁
𝑞 for 𝑁 ∈ Npeasy precisely if

the defender wins GB from [𝑝, 𝑞] with budget 𝑁 .

Thus, we have established that the bisimulation energy game GB character-
izes the equivalences of the P-easy strong spectrum Npeasy. This generalizes
Theorem 2.3 through energy games.

To exploit this property to decide equivalences and solve the spectroscopy
problem algorithmically, we need one more ingredient: A decision procedure
for winning budgets in declining energy games.

4.3 Deciding Energy Games

This section is about how to compute what energy budgets are winning for
the attacker (or the defender) at positions of an energy game:

Problem 2: Energy game winner problem

In the context of an energy system (E , ≤) and a finite monotonic energy
game G = (𝐺, 𝐺d, , upd), the energy game winner problem goes:

Input Game position 𝑔 ∈ 𝐺.
Output Winmin

a (𝑔)—the Pareto front of minimal winning budgets for
the attacker at 𝑔.

We will show how to solve the problem for energy games with updates that
can be undone in a certain sense. To this end, we will adapt the idea of back-
propagating how the defender loses in reachability games fromAlgorithm 2.1.

The change is that we have to propagate not just attacker wins, but Pareto
fronts of attacker-winning energy levels. For this, we have to “invert” the
energy update functions. But, as we have seen in Example 4.2, our specific
declining energy updates are neither injective nor surjective, and thus cannot
be cleanly inverted.

We will tackle these challenges using Galois connections. For details, read-
ers are referred to Lemke (2024).

4.3.1 Galois Connections

Galois connections can be thought of as a pair of monotonic functions that in-
vert each other up to their partial ordering relations. Another standard intuition
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𝑐

≤

𝛾(𝑎)

𝐶

𝛼(𝑐)

≤

𝑎

𝐴

⟺

𝛼

𝛾

Figure 4.10: Visualization of Galois connections
according to Definition 4.10.

⋮ ⋮

ℝ≥0 ℕ

Figure 4.11: Illustration of the Galois connec-
tion of Example 4.4 between ℝ≥0 and ℕ using
⌊⋅⌋-function, whose mapping is illustrated by
the gray triangles.
79 Proposition 4 of Erné et al. (1993).

is that Galois connections couple a concrete and a more abstract domain. This
pairing is what the variable naming in the following definition alludes to.

Definition 4.10 (Galois connection). A Galois connection between two par-
tially ordered sets (𝐶, ≤𝐶) and (𝐴, ≤𝐴) is a pair of functions 𝛼∶ 𝐶 → 𝐴 and
𝛾 ∶ 𝐴 → 𝐶 such that, for all 𝑎 ∈ 𝐴 and 𝑐 ∈ 𝐶 :

𝛼(𝑐) ≤𝐴 𝑎 ⟺ 𝑐 ≤𝐶 𝛾(𝑎).

An illustration of the connection property can be seen in Figure 4.10.

Example 4.4 (ℕ as abstraction forℝ). Intervals of positive real numbers can be
abstracted into natural numbers, as illustrated by Figure 4.11. More formally:

Adopt the non-negative reals ℝ≥0 as concrete domain and the natural
numbers ℕ as abstract domain. Then, as function 𝛼ℝ ∶ ℝ≥0 → ℕ take floor-
ing, 𝑥 ↦ ⌊𝑥⌋, and for the other direction, the identity idℕ, 𝑛 ↦ 𝑛. Clearly,
⌊𝑥⌋ ≤ 𝑛 ⟺ 𝑥 ≤ 𝑛. Therefore, 𝛼ℝ and idℕ form a Galois connection.

Many monotonic functions naturally induce a Galois-connected abstraction
function through min.

Lemma 4.3. The following are equivalent:

• 𝛾 ∶ 𝐴 → 𝐶 is a monotonic function, and 𝛼(𝑐) = min{𝑎 ∣ 𝑐 ≤𝐶 𝛾(𝑎)} for
all 𝑐 ∈ 𝐶 .

• 𝛼 and 𝛾 constitute a Galois connection between 𝐶 and 𝐴.79

Wewill refer to functions derived like 𝛼 in Lemma 4.3 as “undo” functions. We
understand them to generalize inverse functions of thosemonotonic functions
where min{𝑎 ∣ 𝑐 ≤𝐶 𝛾(𝑎)} is defined for any 𝑐. This intuition can also be
expressed more formally as the following proposition:

Proposition 4.5 (Inversion as Galois connection). Assume a function 𝑓 ∶ 𝐴 →
𝐶 has a unique inverse function 𝑓−1 ∶ 𝐶 → 𝐴 such that 𝑓−1 ∘ 𝑓 = id𝐴 and
𝑓 ∘ 𝑓−1 = id𝐶 .

If 𝑓 is monotonic with respect to some partial orders on 𝐶 and 𝐴, then 𝑓−1

and 𝑓 must form a Galois connection.

Proof. Because of injectivity and monotonicity, 𝑓 and 𝑓−1, must be (strictly)
monotonic. Together with the definition of function inversion, we can reason

𝑓−1(𝑐) ≤𝐴 𝑎 ⟹ 𝑓(𝑓−1(𝑐)) ≤𝐴 𝑓(𝑎) ⟹ 𝑐 ≤𝐶 𝑓(𝑎)

and
𝑐 ≤𝐶 𝑓(𝑎) ⟹ 𝑓−1(𝑐) ≤𝐴 𝑓−1(𝑓(𝑎)) ⟹ 𝑓−1(𝑐) ≤𝐴 𝑎.

In the following, we will use a ↺-symbol to label the functions that we use to
undo energy updates.
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1 def compute_winning_budgets(G = (𝐺, 𝐺d, , upd), upd↺) ∶
2 attacker_win ≔ [𝑔 ↦ ∅ ∣ 𝑔 ∈ 𝐺]
3 todo ≔ {𝑔 ∈ 𝐺d ∣ 𝑔 ›/›}
4 while todo ≠ ∅ ∶
5 g ≔ some todo
6 todo ≔ todo ∖ {g}
7 if g ∈ 𝐺a ∶
8 new_attacker_win ≔ Min({upd↺(g, 𝑔′)(e′) ∣

g 𝑔′ ∧ e′ ∈ attacker_win[𝑔′]})
9 else ∶

10 new_attacker_win ≔ {0}
11 for g′ ∈ (g ⋅) ∶
12 new_attacker_win ≔ Min({sup{𝑒a, upd↺(g, g′)(e′)} ∣

𝑒a ∈ new_attacker_win ∧ e′ ∈ attacker_win[g′]})
13 if new_attacker_win ≠ attacker_win[g] ∶
14 attacker_win[g] ≔ new_attacker_win
15 todo ≔ todo ∪ (⋅ g)
16 Winmin

a ≔ attacker_win
17 return Winmin

a

Algorithm 4.1: Algorithm determining the minimal attacker winning budgets
Winmin

a of an energy game G with undo functions upd↺.

Remark 4.3 (Galois connections on the spectrum). Definition 3.5 demands
monotonicity of our observation languages for a spectrum, O𝑁∈N. If we con-
struct an abstraction function as in Lemma 4.3 to undo the language selection
for a set of formulas Φ, the result would read:

𝛼O (Φ) ≔ min{𝑁 ∈ N ∣ Φ ⊆ O𝑁}.

If this function is defined, then its singleton case exactly matches our expres-
siveness prices of Definition 3.6:

expr(𝜑) ≔ min{𝑁 ∈ N ∣ 𝜑 ∈ O𝑁}.

4.3.2 The Algorithm

To implement a backpropagation algorithm, we have to assume that we
know a function that undoes energy updates, upd↺ ∶ ( ) → E → E with
upd↺(𝑚)(𝑒′) = min{𝑒 ∣ 𝑒′ ≤ upd(𝑚)(𝑒)}. That means, we assume that
there is a Galois connection (upd↺(𝑚), upd(𝑚)) between energies E and the
domain of updates {𝑒 ∈ E ∣ upd(𝑚)(𝑒) ≠ ⊥} for each 𝑚 ∈ .

Following Lemke (2024), we assume that the energy system (E , ≤) is a
well-founded bounded sup-semi-lattice. By 0, we denote its minimal element.

Algorithm 4.1 computes the minimal attacker winning budgets.
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g1

(0, 2), (2, 1)

g2

(0, 2)

g3

(1, 1)

g4

(1, 1)

g5

(0, 1)

g6

(0, 0)

0, 0

−1, 0

−2, −1

+2, −1

0, 0

0, 0

−1, 0

0, −1

Figure 4.12: Computed winning budgets Winmin
a on the game in Example 4.5.

g5 ∶ (0, 1) (1, 0)upd⟲

g6 ∶ (0, 0)

(1, 1)

Figure 4.13: Combination (dashed red) of suc-
cessor Pareto fronts (black) to intersect at de-
fender position g4 in step 4.

g2

(3, 2)

upd⟲

g3, g4 ∶ (1, 1)

(0, 2) (2, 1)

Figure 4.14: Combination (dashed red) of suc-
cessor Pareto fronts (black) to take the union at
attacker position g1 in step 8.

The algorithm can be understood as a generalization of Algorithm 2.1, but
as positionsmight need to be revisitedmore than once, we have to depart from
the option counting trick. Whenever we learn about a new minimal energy
for the attacker to win, we schedule a position to be (re-)visited. The chain
reaction starts at defender positions with no outgoing moves (lines 3 and 10).

We illustrate the algorithm by running it on the simple energy game of
Example 4.1.

Example 4.5 (Deciding the simple energy game). Let us execute Algorithm 4.1
on the simple ℕ2-game of Example 4.1. The game graph, labeled by the min-
imal attacker winning energies we find, is reproduced in Figure 4.12.

What we need for the algorithm to run is some undo function
upd↺ ∶ ( ) → E → E . We define it as:

upd↺(𝑚)(𝑒′) ≔ sup{𝑒 − ⃗𝑢, 0} if 𝑚 is ⃗𝑢-labeled

We list the steps of the computation in Table 4.1, and explain the mechanics
below.

0. The algorithm begins with g6 in the todo-set as this is the only position
where the defender is stuck.

1. Updating the defender node g6 ∈ 𝐺d, we set its minimal attacker-
winning budget to 0. This means that the attacker wins here with any
budget. As there has been a change, both predecessors g4 and g5 are
added to the todo. (Their order is undefined; for the sake of the simu-
lation we will always pick the first positions from the todo.)

2. Updating g4 ∈ 𝐺d finds no attacker wins so far because we do not yet
know a way for the attacker to win g5, that is, attacker_win[g5] = ∅.

3. g5 ∈ 𝐺a is updated with the upd↺((0, −1))((0, 0)) = sup{(0, 0) −
(0, −1), 0} = (0, 1). This places g4 in todo again.

4. Now, we can find attacker winning budgets for g4 ∈ 𝐺d: The two
successor options (after undo-update) are (0, 1) and (1, 0), as de-
picted in Figure 4.13. Unless the attacker at least arrives with energy
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sup{(0, 1), (1, 0)} = (1, 1), the defender has a way of winning.
Effectively, this amounts to intersecting attacker winning budgets of
possible successor positions.

5. For g1 ∈ 𝐺a, it suffices to know a winning budget for one succes-
sor. Therefore, we can determine as a preliminary winning budget
upd↺((−2, −1))((1, 1)) = (3, 2).

6. g2 ∈ 𝐺a also derives its winning budget from (1, 1). But (1, 1) −
(2, −1) = (−1, 2) would be outside the possible energy levels the at-
tacker could carry here and is thus sup-ed into ℕ2, yielding new win
(0, 2).

7. g3 ∈ 𝐺a just propagates (1, 1) from g4.
8. Revisiting g1 ∈ 𝐺a, we can now combine the three Pareto-fronts of its

successors as illustrated in Figure 4.14 as Min{(0, 2), (2, 1), (3, 4)} =
{(0, 2), (2, 1)}. This operation corresponds to taking the union of the
three sets of attacker winning budgets. The previous minimal budget
(3, 4) of step 5 is thus superseded. As todo is empty, the algorithm
terminates.

Theorem 4.2 (Correctness). Assume energies form a well-founded
bounded sup-semi-lattice (E , ≤). Given a finite-state energy game
G = (𝐺, 𝐺d, , upd) with computable undo function upd↺(𝑚)(𝑒′) =
min{𝑒 ∣ 𝑒′ ≤ upd(𝑚)(𝑒)} for all moves, Algorithm 4.1 computes the Pareto
front of minimal attacker winning budgets, solving the energy game winner
problem (Problem 2).

Proof. Algorithm 4.1 is a work-list variant of a fixed-point iteration comput-
ing the least fixed point of attacker winning budgets Wina according to the
inductive characterization of Proposition 4.3.

The “least” here refers to the size of the Wina-sets characterized by the
Winmin

a -Pareto front.
A detailed proof, employing Kleene’s fixed point theorem, can be found in

Table 4.1: Steps while solving the game in Example 4.5.

step g new_attacker_win todo

0 – g𝑖 ↦ ∅ g6
1 g6 {(0, 0)} g4, g5
2 g4 ∅ g5
3 g5 {(0, 1)} g4
4 g4 {(1, 1)} g1, g2, g3
5 g1 {(3, 2)} g2, g3
6 g2 {(0, 2)} g3, g1
7 g3 {(1, 1)} g1
8 g1 {(0, 2), (2, 1)} ∅
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80 As in Theorem 4.2, we refer to Lemke (2024)
for a very detailed proof, where the correspond-
ing fact is proved as Theorem 7.

Lemke (2024). Theorem 5 of Lemke (2024) refers to a variant of Algorithm 4.1,
where all game positions are updated simultaneously in each iteration, which
aligns more directly with the underlying functor. As is common for graph
algorithms, Algorithm 4.1 with updates of single vertices whose neighbor-
hood has changed computes the same result and, usually, in a more efficient
manner.

4.3.3 Complexity

Thanks to Lemke (2024), we can name quite precise bounds for the running
time of the algorithm in terms of size of the game and shape of the energy
lattice.

Definition 4.11. Thewidth, wdh𝐵(𝑏), of a (semi-)lattice (𝐵, ≤) below a point 𝑏
is defined as the maximal size of anti-chains 𝐵′ ⊆ ↓ {𝑏}. (Cf. Definition 3.4.)

Theorem 4.3 (Complexity). Consider the following parameters of an energy
game problem on G = (𝐺, 𝐺d, , upd) where the energies at least form a
well-founded bounded sup-semi-lattice (E , ≤):

• 𝑡sup, time to calculate the supremum between two elements of E ,
• 𝑡≤, time to compare two elements of E ,
• 𝑡upd↺ , time to compute upd↺(⋅) on an energy,
• 𝑒G , the highest energy that can be achieved by applying permutations of

upd↺(⋅)(⋅) to 0 for |𝐺| − 1 times.
• 𝑜 , the out-degree of the game graph .

Then, Algorithm 4.1 computes the minimal attacker winning budgets in

O((|𝐺|2 +| ↓ {𝑒G}|) ⋅ |𝐺| ⋅ 𝑜 ⋅ (wdhE(𝑒G))2 ⋅ (𝑡upd↺ +𝑡sup +wdhE(𝑒G) ⋅ 𝑡≤)).

If upd is declining, then the following suffices:

O(|𝐺|2 ⋅ 𝑜 ⋅ (wdhE(𝑒G))2 ⋅ (𝑡upd↺ + 𝑡sup + wdhE(𝑒G) ⋅ 𝑡≤)).

In both cases, the algorithm needs O(|𝐺|⋅wdhE(𝑒G)⋅𝑠E) space to store the Pareto
fronts, where 𝑠E bounds the space needed per energy. For declining energy games,
it is reasonable to assume 𝑠E ∈ O(𝑑).80

4.3.4 Solving Declining Energy Games

The preceding two subsections have established facts that we now only need
to instantiate to declining energy games. For this, we must instantiate upd↺

to obtain an algorithm and think about the structure of the energies to tell its
complexity.

Definition 4.12 (Undoing declining updates). Theundo-update function upd↺

on a 𝑑-dimensional declining energy game is defined component-wise for 𝑘 ∈
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{1, …, 𝑑} as:

(upd↺(𝑢, 𝑒′))𝑘 ≔ max( {𝑒′
𝑘 − 𝑢𝑘 ∣ 𝑢𝑘 ∈ {0, −1}}

∪ {𝑒′
𝑗 ∣ ∃𝐷. 𝑢𝑗 = min𝐷 ∧ 𝑘 ∈ 𝐷}).

Example 4.6. Consider the update label (min{1,2}, −1) (a 2D-sibling of the one
from Example 4.2). Its undo-update according to Definition 4.12 computes
upd↺((min{1,2}, −1), (𝑒1, 𝑒2)) = (max(𝑒1, 𝑒2), 𝑒2 + 1).

Figure 4.15 shows how updates and undo-updates transform 2D-
coordinates.
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Figure 4.15: Effects of updates upd((min{1,2}, −1), ⋅) and their undoing via
upd↺((min{1,2}, −1), ⋅).

For instance, we can observe the handling of non-invertibility:

• upd↺((min{1,2}, −1), (2, 1)) = (2, 2)
• upd↺((min{1,2}, −1), (2, 0)) = (2, 2)
• upd((min{1,2}, −1), (4, 2)) = (2, 1)
• upd((min{1,2}, −1), (2, 2)) = (2, 1)

Intuitively, updates including min{…} cap coordinates; the undo-update then
rounds into the space from where a coordinate would safely be dominated.

Lemma 4.4. For all updates 𝑢 ∈ Up, upd↺(𝑢, ⋅) and upd(𝑢, ⋅) form a Galois
connection on the domain dom(upd(𝑢, ⋅)).

Proof. As upd(𝑢, ⋅) is monotonic, all that needs to be shown according to
Lemma 4.3, is that upd↺(𝑢, 𝑒′) = min{𝑒 ∣ 𝑒′ ≤ upd(𝑢, 𝑒)}.

• Soundness: upd↺(𝑢, 𝑒′) ∈ {𝑒 ∣ 𝑒′ ≤ upd(𝑢, 𝑒)}. This boils down to
showing 𝑒′

𝑘 ≤ (upd(𝑢, upd↺(𝑢, 𝑒′)))𝑘. Consider the cases of 𝑢𝑘.

– Case 𝑢𝑘 ∈ {0, −1}. Then, we have to show 𝑒′
𝑘 ≤ (upd↺(𝑢, 𝑒′))𝑘 +

𝑢𝑘. Due to the max-definition of upd↺, this must be the case as
𝑒′

𝑘 = 𝑒′
𝑘 − 𝑢𝑘 + 𝑢𝑘 ≤ (upd↺(𝑢, 𝑒′))𝑘 + 𝑢𝑘.
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– Case there is 𝐷 such that 𝑢𝑘 = min𝐷 and 𝑘 ∈ 𝐷. Then, by defini-
tion of min-updates, we have to show 𝑒′

𝑘 ≤ min{(upd↺(𝑢, 𝑒′))𝑗 ∣
𝑗 ∈ 𝐷}, that is, 𝑒′

𝑘 ≤ upd↺(𝑢, 𝑒′)𝑗 for all 𝑗 ∈ 𝐷. We do so by con-
tradiction: Assume there were a 𝑗 where this ordering does not
hold, meaning 𝑒′

𝑘 > upd↺(𝑢, 𝑒′)𝑗. As 𝑘 ∈ 𝐷, this is impossible
due to the definition of upd↺ in terms of max.

• Minimality: For all 𝑒′ ≤ upd(𝑢, 𝑒), we show upd↺(𝑢, 𝑒′) ≤ 𝑒. More
specifically, (upd↺(𝑢, 𝑒′))𝑘 ≤ 𝑒𝑘. Let us define ma ≔ max({0} ∪ {𝑒′

𝑗 ∣
∃𝐷. 𝑢𝑗 = min𝐷 ∧ 𝑘 ∈ 𝐷}). Consider the cases of 𝑢𝑘 ∈ Up.

– Case 𝑢𝑘 ∈ {0, −1} and 𝑒′
𝑘 − 𝑢𝑘 ≥ ma. Then 𝑒′

𝑘 ≤ (upd(𝑢, 𝑒))𝑘 =
𝑒𝑘 + 𝑢𝑘, implying 𝑒′

𝑘 − 𝑢𝑘 ≤ (upd(𝑢, 𝑒))𝑘 = 𝑒𝑘. By definition,
(upd↺(𝑢, 𝑒′))𝑘 = max(𝑒′

𝑘 − 𝑢𝑘,ma). As 𝑒′
𝑘 − 𝑢𝑘 ≥ ma, we can

connect to the previous inequality, getting (upd↺(𝑢, 𝑒′))𝑘 = 𝑒′
𝑘 −

𝑢𝑘 ≤ 𝑒𝑘.
– Otherwise, (upd↺(𝑢, 𝑒′))𝑘 = ma. We show ma ≤ 𝑒𝑘 by contra-

diction. Assume it were the case that ma > 𝑒𝑘. For this to be true
there would need to be 𝑗 and 𝐷 such that 𝑢𝑗 = min𝐷, 𝑘 ∈ 𝐷,
and 𝑒′

𝑗 ≥ ma > 𝑒𝑘. By definition of min-update at 𝑗, we calcu-
late (upd(𝑢, 𝑒))𝑗 ≤ 𝑒𝑘 < 𝑒′

𝑗. But this would contradict the global
assumption that 𝑒′ ≤ upd(𝑢, 𝑒).

Lemma 4.5 (Declining complexity). Algorithm 4.1 solves the energy game prob-
lem on a 𝑑-dimensional declining energy game G = (𝐺, 𝐺d, , 𝑤) in time

O(𝑜 ⋅ |𝐺|2⋅𝑑 ⋅ (𝑑2 + |𝐺|𝑑−1 ⋅ 𝑑))

and space O(|𝐺|𝑑 ⋅ 𝑑).

Proof. For declining updates, we instantiate the second case of Theorem 4.3:

O(|𝐺|2 ⋅ 𝑜 ⋅ (wdhE(𝑒G))2 ⋅ (𝑡upd↺ + 𝑡sup + wdhE(𝑒G) ⋅ 𝑡≤)).

For declining energy games as defined in Definition 4.6, we can fill in several
blanks:

• 𝑡sup, the time to calculate the supremum between two elements of En is
in O(𝑑),

• 𝑡≤, time to compare two elements of En is in O(𝑑),
• 𝑡upd↺ , time to compute upd↺ on an energy is in O(𝑑2),
• 𝑒G , the highest energy that can be achieved by applying permutations
of upd↺ to 0 for |𝐺| − 1 times, is the 𝑑-ary vector (|𝐺| − 1, …, |𝐺| − 1),

• wdhEn(𝑒G), the widest anti-chain under 𝑒G , can be bounded O(|𝐺|𝑑−1).
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This yields:

O(|𝐺|2 ⋅ 𝑜 ⋅ (wdhEn(𝑒G))2 ⋅ (𝑡upd↺ + 𝑡sup + wdhEn(𝑒G) ⋅ 𝑡≤))
= O(|𝐺|2 ⋅ 𝑜 ⋅ (|𝐺|𝑑−1)2 ⋅ (𝑑2 + 𝑑 + |𝐺|𝑑−1 ⋅ 𝑑))
= O(𝑜 ⋅ |𝐺|2𝑑+2−2 ⋅ (𝑑2 + |𝐺|𝑑−1 ⋅ 𝑑))
= O(𝑜 ⋅ |𝐺|2𝑑 ⋅ (𝑑2 + |𝐺|𝑑−1 ⋅ 𝑑))

For space complexity, we obtain:

O(|𝐺| ⋅ wdhEn(𝑒G) ⋅ 𝑑)
= O(|𝐺| ⋅ |𝐺|𝑑−1 ⋅ 𝑑)
= O(|𝐺|𝑑 ⋅ 𝑑)

Because of the parameterization, we can easily see that some complexities go
away if we use a more abstract energy lattice.

Definition 4.13 (Flattened energies). For 𝑑-dimensional energy games, we
define the flattened energies as Ên ≔ ({0, 1, ∞})𝑑. A standard energy 𝑒 ∈ En
is cast to Ên by 𝑒 where

(𝑒)𝑘 ≔ {𝑒𝑘 if 𝑒𝑘 ≤ 1
∞ otherwise

.

We denote as flattened energy game winner problem the variant of Problem 2
that outputs

Ŵinmin
a (𝑔) ≔ Min(Wina(𝑔) ∩ Ên).

Algorithm 4.1 can still be used to solve the flattened version of the problem
by adapting upd↺ to represent all components above 1 by ∞. Effectively,
this decouples the size of Pareto fronts from the game size. In this instance,
Lemma 4.5 becomes:

Lemma 4.6 (Flattened complexity). Algorithm 4.1 solves the flattened energy
game problem on a 𝑑-dimensional declining energy game G = (𝐺, 𝐺d, , 𝑤)
in time

O(𝑜 ⋅ |𝐺|2⋅𝑑 ⋅ (𝑑2 + 3𝑑−1 ⋅ 𝑑))
and in space O(|𝐺| ⋅ 3𝑑−1 ⋅ 𝑑).
Thebounds we have established are exponential with regard to the dimension-
ality 𝑑. But in our use case, we care for energy games of fixed dimensionality.
The time bounds are polynomial with regard to game graph size. The space
bounds behave similarly, but, in the flattened variant, fixed energy makes the
space usage even drop to be linear in terms of game graph size.

We have gathered enoughmaterial to prove that the spectroscopy problem
for the P-easy strong spectrum is indeed solvable in polynomial time, thus
justifying the name we chose for the spectrum.
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4.3.5 Polynomial Spectroscopy Complexity

As outlined in Section 3.3.1, we consider the spectroscopy problem for 𝑝 and
𝑞 solved when we can compute Min(N ∖ N𝑝,𝑞). More specifically, according
to Theorem 4.1, the defender-won energies answer the spectroscopy question
of Problem 1:

Npeasy
𝑝,𝑞 = WinGB

d ([𝑝, 𝑞]).
By the determinacy of winning budgets (Proposition 4.2),

Npeasy ∖ Npeasy
𝑝,𝑞 = WinGB

a ([𝑝, 𝑞])

and thus
Min(Npeasy ∖ Npeasy

𝑝,𝑞 ) = WinminGB
a ([𝑝, 𝑞]).

Thereby, Problem 1 for Npeasy on a transition system reduces to Problem 2 on
the corresponding bisimulation energy game GB . The latter is answered by
Algorithm 4.1.

Theorem 4.4 (Overall complexity). Given a transition system S , the spec-
troscopy problem for the Npeasy-spectrum can be solved in polynomial time with
respect to the size of S .

Proof. Theorem 4.1 has established that we can solve the spectroscopy prob-
lem for the Npeasy-spectrum by deciding the winning budgets of the bisimula-
tion energy game GB on S = (P,Act, −→). Thus, all that remains to be done is
to instantiate the winning budget complexity of Lemma 4.5 for the case 𝑑 = 3
with the size of GB according to Definition 4.8.

The number of attacker positions is bounded by |P|2. These positions can
initiate up to |P| ⋅ |−→| simulation challenges, leading to a similarly-bounded
number of defender positions, which again can be left by |P| ⋅ |−→| moves.

In total, this amounts to 𝑜
B
in O(|P| ⋅ |−→|) and to |𝐺B | in O(|P|2).

Inserting the parameters in the time bounds of Lemma 4.5 yields:

𝑂( 𝑜
B

⋅ |𝐺B |2⋅𝑑 ⋅ (𝑑2 + |𝐺B |𝑑−1 ⋅ 𝑑) )
= 𝑂( (|P| ⋅ |−→|) ⋅ (|P|2)2⋅3 ⋅ (32 + (|P|2)3−1 ⋅ 3) )
= 𝑂( (|P| ⋅ |−→|) ⋅ |P|12 ⋅ |P|4 )
= 𝑂( |P|17 ⋅ |−→| ).

For space complexity, the approach arrives at O((|P| ⋅ |−→|)3). The bound
drops to O(|P| ⋅ |−→|) in the flattened variant of Lemma 4.6.

4.4 Discussion

This chapter has shown how to solve the spectroscopy problem for the Npeasy

spectrum in polynomial time, thereby deciding all its preorders and equiva-
lences at once.
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The energy game approach. The core ingredient has been to characterize
the spectrum’s observation languages through an energy game (Idea 6, Theo-
rem 4.1) derived from the bisimulation game. The Pareto front view is slightly
more general than other characteristic games. For instance, Hüttel & Shukla
(1996) use reachability games to establish polynomial upper bounds individ-
ually for simulation-like notions.

The focus on the attacker in the bisimulation game is highly analogous to
Geuvers & Jacobs (2021) championing apartness as the dual of bisimilarity to
work with equivalences. As Keiren &Willemse (2024) show, apartness proofs
and attacker strategies correspond.

To compute the Pareto fronts, we use a fixed point algorithm (Idea 7, Al-
gorithm 4.1). It can be thought of as a generalization of well-known ways to
compute shortest distances in graphs (Mohri, 2002).
Remark 4.4 (Shortest paths). The energy game problem of this chapter can
be seen as a generalization of the shortest path problem on directed graphs to
account for two players as well as for much more general distances and cost
functions.

To see how, consider energy games on (ℕ, ≤) where only deadlock posi-
tions belong to the defender andwhere all updates constitute one-dimensional
ℕ-subtraction. Then, 𝑒 ∈ Winmin

a (𝑔) iff 𝑒 is the length of a shortest path from
𝑔 to some defender position (where negative (−𝑛)-updates stand for what is
usually written as a positive edge weight 𝑛 for graphs). In this instance, Algo-
rithm 4.1 behaves like the well-known Bellman–Ford algorithm for shortest
paths.
What's new? Algorithm 4.1 contains relevant generalizations and practical
improvements compared to the one originally used in Bisping (2023b). Most
importantly, the declining energy version loses a dimension of exponentiality.
For the polynomial equivalences, we arrive at a reasonably polynomial com-
plexity for the spectroscopy instantiation, including reasonable space com-
plexity for a flattened energy lattice. Thanks to Lemke’s work Lemke (2024),
we have a thorough Isabelle/HOL formalization.

What's next? At this point, we have, in principle, answered our main research
question how to conveniently decide for a pair of states which notions from
a spectrum of behavioral equivalences relate the two. In the second half of
the thesis, we will leverage this approach to first treat the “strong spectrum”
of concrete equivalences and then the “weak spectrum” of equivalences that
abstract internal behavior.

Knowing from Section 3.3.3 that parts of the strong spectrum are
PSPACE-hard, the algorithmic complexity indirectly proves that the bisimu-
lation game cannot be used to characterize the whole spectrum. (Unless the
polynomial hierarchy miraculously collapses to PSPACE = P.)

Thus, “we’re gonna need a bigger boat” game, at least exponentially-sized,
to also cover PSPACE-hard notions.

https://www.youtube.com/watch?v=wB3g967rFLs
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5 Spectroscopy of the
Strong Equivalence
Spectrum

Related publications. This chapter showcases
the main result of my paper “Process
equivalence problems as energy games”
(Bisping, 2023b). We move beyond Bisping
(2023b) by also deriving individual equivalence
games from our characterization and showing
how these enable polynomial-time decision
procedures for P-easy notions.

The energy game approach can, in fact, be leveraged to solve the spectroscopy
problem for the whole of the strong equivalence spectrum.

The core ingredient of this chapter is a richer energy game, we dub “spec-
troscopy game,” to be presented in Section 5.1. The bisimulation energy game
of Chapter 4 is not complex enough to capture all strong equivalences of Chap-
ter 3. It is “too easy” for the attacker in the sense that they can use unbounded
conjunctions to account for every transition the defender might choose after
each observation. But the weaker notions of the spectrum heavily limit how
many conjunctions may be used to name a distinction!

Our core trick will be to break the link between conjunctions and obser-
vation sequences in the game, analogously to the subset construction on finite
automata.

Idea 8: Subsets to separate observations and conjunctions

Trace-like notions can be addressed in the spectroscopy game by in-
terjecting a subset construction on defender-controlled states between
moves that correspond to observations and to conjunctions.

This will lead to exponential blow-up. Some of it can be alleviated, as we
will see in Section 5.2, but most is necessary when deciding strong notions
collectively. In Section 5.3, we discuss how to get rid of the blow-up where
possible when instantiating the game to decide equivalences individually.

Idea 9: Generating equivalence checkers

By instantiating the spectroscopy gamewith known initial energies and
exploiting the supply of conjunction moves, we can derive efficient de-
cision procedures for individual equivalences.

Figure 5.1 gives an overview of the two routes to decide equivalences collec-
tively and individually that we will explore.
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States 𝑝, 𝑞 in
transition system S

Strong notions that
fit to preorder 𝑝 to 𝑞

Does notion 𝑁
preorder 𝑝 to 𝑞?

Strong spectroscopy
energy game GS

△

Derived reachability
game Reach(GS

△, 𝑁)

Minimal attacker winning
budgets Winmin

a ([𝑝, {𝑞}]a)

Defender winning region
([𝑝, {𝑞}]a, 𝑁) ∈ Wind

Spectroscopy problem

Definition 5.1 Theorem 5.1 XOR

Algorithm 4.1

𝑁 -preorder problem

Definition 5.5

Algorithm 2.1

Section 5.1
and 5.2

Section 5.3

Figure 5.1: How we apply the spectroscopy approach to the full strong spectrum.

5.1 The Strong Spectroscopy Game

In this section, we examine a game that does not “overlook” trace observa-
tions, as the bisimulation energy game (Definition 4.8) does.

Example 5.1 (Without a trace). Consider the CCS processes a.b.a and a.(a +
b). Clearly, only the first one allows the trace observation ⟨a⟩⟨b⟩⟨a⟩. Thus,
the processes are not bisimilar and can be distinguished in the bisimulation
game. But the bisimulation game formula (cf. Lemma 2.9) derivable from the
game would be ⟨a⟩ ⋀{⟨b⟩, ⟨b⟩ ⋀{⟨a⟩}}, which is not part of trace observa-
tions Ostrong

(∞,0,0,0,0,0).

It might be possible to reconstruct trace observations from such tree-like ob-
servations as the one of Example 5.1. But by the closing arguments of Sec-
tion 4.4, and also according to Martens & Groote (2023), this must inherently
be NP-hard. What we will do instead is adapt the bisimulation game such that
it also expresses trace-like distinctions, and precisely counts conjunctions.

5.1.1 The Game

The strong spectroscopy game is played not on pairs of states, but on a pair
of a state and a set of states! Figure 5.2 gives a graphical representation. The
intuition is that the attacker shows how to construct formulas that distinguish
a process 𝑝 from every 𝑞 in a set of processes 𝑄. As long as observations
happen, the defender is moved to the set𝑄 of states that are reachable through
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[𝑝, 𝑄]a (𝑝, 𝑄 ∖ 𝑄∗, 𝑄∗)d

[𝑝, 𝑞]∧
a [𝑞, {𝑝}]a

[𝑝, {𝑞}]a

[𝑝′, 𝑄′]a

𝑝 𝛼−→ 𝑝′

𝑄 𝛼−→ 𝑄′

−1, 0, 0, 0, 0, 0

𝑄∗ ⊆ 𝑄
0, 0, 0, 0, 0, 0

𝑞 ∈ 𝑄 ∖ 𝑄∗
0, −1, 0, min{3,4}, 0, 0 min{1,4}, 0, 0, 0, 0, 0

𝑝 ≠ 𝑞
min{1,5}, 0, 0, 0, 0, −1

𝑝′ = 𝑝
𝑄′ = 𝑄∗ ≠ ∅

min{1,3}, −1, 0, 0, 0, 0

Figure 5.2: Schematic spectroscopy game G△ of Definition 5.1.

nondeterminism; only at conjunction moves does the defender have to choose
a 𝑞 ∈ 𝑄. Treating conjunctions more explicitly allows us to track the depth
of positive conjuncts in sufficient detail.

Again, energies limit the syntactic expressiveness of the formulas.

• The first dimension bounds for how many turns the attacker may chal-
lenge observations of actions.

• The second dimension limits how often they may use conjunctions to
resolve nondeterminism.

• The third, fourth, and fifth dimensions limit how deeply observations
may nest underneath a conjunction, for which they do not need to
change themselves. The third stands for one of the deepest positive con-
juncts and the fourth for the other positive conjuncts; the fifth stands
for negative conjuncts.

• The last dimension limits how often the attacker may use negations to
enforce symmetry by swapping sides.

The moves of the following definition closely match productions in the gram-
mar of observations for the strong spectrum of Definition 3.7.

Definition 5.1 (Strong spectroscopy game). For a system S = (P,Act, −→),
the 6-dimensional strong spectroscopy game GS

△ = (𝐺, 𝐺d, , 𝑤) consists of

• attacker (main) positions [𝑝, 𝑄]a ∈ 𝐺a,
• attacker conjunct positions [𝑝, 𝑞]∧

a ∈ 𝐺a,
• defender conjunction positions (𝑝, 𝑄, 𝑄∗)d ∈ 𝐺d,
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where 𝑝, 𝑞 ∈ P and 𝑄, 𝑄∗ ∈ 2P , and six kinds of moves:

observation [𝑝, 𝑄]a −1,0,0,0,0,0 [𝑝′, 𝑄′]a if 𝑝 𝛼−→ 𝑝′, 𝑄 𝛼−→ 𝑄′,
conjunction [𝑝, 𝑄]a 0,0,0,0,0,0 (𝑝, 𝑄 ∖ 𝑄∗, 𝑄∗)d if 𝑄∗ ⊆ 𝑄,
conj. revival (𝑝, 𝑄, 𝑄∗)d

min{1,3},−1,0,0,0,0 [𝑝, 𝑄∗]a if 𝑄∗ ≠ ∅,
conj. answer (𝑝, 𝑄, 𝑄∗)d

0,−1,0,min{3,4},0,0 [𝑝, 𝑞]∧
a if 𝑞 ∈ 𝑄,

positive conjunct [𝑝, 𝑞]∧
a

min{1,4},0,0,0,0,0 [𝑝, {𝑞}]a, and
negative conjunct [𝑝, 𝑞]∧

a

min{1,5},0,0,0,0,−1 [𝑞, {𝑝}]a if 𝑝 ≠ 𝑞.

On the processes of Example 5.1, the attacker would move:

[a.b.a, {a.(a + b)}]a −ê1 [b.a, {a, b}]a
−ê1 [a, {0}]a
−ê1 [0,∅]a
0 (0,∅,∅)d ›/›

Thereby, the attacker would get the defender stuck on a trace budget of
(3, 0, 0, 0, 0, 0) ≤ (∞, 0, 0, 0, 0, 0) = T.

The handling of conjunctions can be a little more intricate.

Example 5.2 (Failure traces enter the game). Let us think back to Exam-
ple 3.5, that is, to Q′ ≔ 𝜏 .(a.a + b.b), T′

�aa ≔ Q′ + 𝜏 .a.a, and T′
�a ≔

Q′ +𝜏 .a, where T′
�aa is distinguished from T′

�a by the failure-trace observation
⟨𝜏⟩ ⋀{⟨a⟩⟨a⟩, ¬⟨b⟩} ∈ Ostrong

(3,1,2,0,1,1) ⊆ Ostrong
FT .

To point out a similar distinction in the spectroscopy game, the attacker
moves via 𝜏−→:

[T′
�aa, {T′

�a}]a −ê1 [a.a, {a, a.a + b.b}]a
0 (a.a, {a.a + b.b}, {a})d

Now, the defender has two options.

• If defender chooses conjunction answer ⋯ 0,−1,0,min{3,4},0,0 [a.a, a.a +
b.b]∧

a, then attacker points out that b is not possible for the left process:

[a.a, a.a + b.b]∧
a

min{1,5},0,0,0,0,−1 [a.a + b.b, {a.a}]a
−ê1 [b,∅]a
0 (b,∅,∅)d ›/›

• If defender opts for a conjunction revival ⋯ min{1,3},−1,0,0,0,0 [a.a, {a}]a,
then attacker highlights that the left process can do aa:

[a.a, {a}]a −ê1 [a, {0}]a
−ê1 [0,∅]a
0 (0,∅,∅)d ›/›

To win in both cases, the attacker must start with an energy budget of at least
(3, 1, 2, 0, 1, 1).
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81 A usage guide on the syntax can be found in
Section 8.1.1.

82 A spectroscopy game on this example can
also be played through in the computer game
The Spectroscopy Invaders, see Section 8.2.1.

83 Proof in Lemma 1 of Bisping (2023c).

The game also allows an alternative through nested negations that the
attacker wins at (3, 2, 0, 0, 2, 2), but this is not interesting for specific equiv-
alences below bisimilarity.

Example 5.3 (Half-simulated philosophers). Let us see what our prototype
implementation on equiv.io reports about our original example processes P
and Q of Chapter 2. We can input the philosopher processes of Example 2.2
and Example 2.3,81 obtaining a transition system matching Example 2.1:

Interactive model on equiv.io.PA = fork.a
PB = fork.b
P = (fork! | PA | PB) \ {fork}

Q = (fork! | fork.(a + b)) \ {fork}

@compare P, Q

Starting @compare (on equiv.io) triggers a spectroscopy along the lineswe have
discussed, leading to the output:82

• Preordered by:

simulation

• Left-right-distinguished by:

⟨τ⟩⋀{¬⟨b⟩⊤} (failure)

⟨τ⟩⋀{¬⟨a⟩⊤} (failure)

• Equated by:

trace

That P is simulated by Q matches our finding from Example 2.6. Internally
this is established by building the spectroscopy game and computing that
Winmin

a ([P, {Q}]a) = {(2, 1, 0, 0, 1, 1)}.
That no equivalence besides or above simulation can hold, is justified to

the user by the failure ⟨τ⟩⋀{¬⟨a⟩⊤}, which we also discussed in Section 3.1.2.
In the upcoming Section 5.1.2, we will also give the rules that the tool uses to
construct this witness in Strat△.

Invoking @compare Q, P for the other direction, equiv.io reports
⟨τ⟩⋀{⟨b⟩⊤,⟨a⟩⊤} as a distinguishing formula disproving simulation (as we
have found in Example 2.12).

The spectroscopy game still is a bisimulation game in the following sense.

Proposition 5.1 (Defender bisimilarity). States 𝑝0 and 𝑞0 are bisimilar precisely
if the defender wins G△ from [𝑝0, {𝑞0}]a for every initial energy budget 𝑒0, that
is, if (∞, ∞, ∞, ∞, ∞, ∞) ∈ Wind([𝑝0, {𝑞0}]a).83

Remark 5.1 (The △-symbol). We use the △ in G△ with a double meaning:
To symbolize a prism, which reveals the spectrum of light, and to mean dif-
ference, as the game expresses an abstract form of subtraction in the sense of
Section 3.3.2.

https://equiv.io
https://equiv.io/#code=UEEgPSBmb3JrLmEKUEIgPSBmb3JrLmIKUCAgPSAoZm9yayEgfCBQQSB8IFBCKSBcIHtmb3JrfQoKUSAgPSAoZm9yayEgfCBmb3JrLihhICsgYikpIFwge2Zvcmt9CgpAY29tcGFyZSBQLCBRCgpAc25pcCAiLS0tIGxheW91dCBpbmZvIC0tLSIKCkBjb21wYXJlIFEsUApQKHg9MTUwLCB5PTUwLCBtYWluKQpRKHg9NDAwLCB5PTUwLCBtYWluKQ==
https://equiv.io
https://equiv.io
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5.1.2 Correctness

To prove correctness, we proceed as with the bisimulation energy game in
Section 4.2.3: On the one hand, we show that game moves correspond to
formulas of similar prices and that the attacker winning implies the formulas
to be distinguishing. On the other hand, we establish that formulas of certain
expressiveness prices certify winning attacks of matching budgets.

Definition 5.2 (Strategy formulas for G△). In the context of a strong spec-
troscopy game GS

△, the set of strategy formulas Strat△(𝑔, 𝑒) for a game posi-
tion 𝑔 and a budget 𝑒 is defined inductively by the following rules in Figure 5.3.

observation

[𝑝, 𝑄]a −ê1 [𝑝′, 𝑄′]a 𝑒′ = upd(−ê1, 𝑒) ∈ WinG△
a ([𝑝′, 𝑄′]a)

𝑝 𝛼−→ 𝑝′ 𝑄 𝛼−→ 𝑄′ 𝜑 ∈ Strat△([𝑝′, 𝑄′]a, 𝑒′)
⟨𝛼⟩𝜑 ∈ Strat△([𝑝, 𝑄]a, 𝑒)

conjunction
[𝑝, 𝑄]a 0 (𝑝, 𝑄′, 𝑄∗)d 𝑒 ∈ WinG△

a ((𝑝, 𝑄′, 𝑄∗)d) 𝜑 ∈ Strat△((𝑝, 𝑄′, 𝑄∗)d, 𝑒)
𝜑 ∈ Strat△([𝑝, 𝑄]a, 𝑒)

conj. answer
∀𝑞 ∈ 𝑄. (𝑝, 𝑄,∅)d

𝑢𝑞 [𝑝, 𝑞]∧
a ∧ 𝑒𝑞 = upd(𝑢𝑞, 𝑒) ∈ WinG△

a ([𝑝, 𝑞]∧
a) ∧ 𝜓𝑞 ∈ Strat△([𝑝, 𝑞]∧

a, 𝑒𝑞)
⋀𝑞∈𝑄 𝜓𝑞 ∈ Strat△((𝑝, 𝑄,∅)d, 𝑒)

conj. revival

∀𝑞 ∈ 𝑄. (𝑝, 𝑄, 𝑄∗)d
𝑢𝑞 [𝑝, 𝑞]∧

a ∧ 𝑒𝑞 = upd(𝑢𝑞, 𝑒) ∈ WinG△
a ([𝑝, 𝑞]∧

a) ∧ 𝜓𝑞 ∈ Strat△([𝑝, 𝑞]∧
a, 𝑒𝑞)

(𝑝, 𝑄, 𝑄∗)d 𝑢∗ [𝑝, 𝑄∗]a 𝑒∗ = upd(𝑢∗, 𝑒) ∈ WinG△
a ([𝑝, 𝑄∗]a)

𝜓∗ = ⟨𝛼⟩𝜑 ∈ Strat△([𝑝, 𝑄∗]a, 𝑒∗)
⋀𝑞∈𝑄∪{∗} 𝜓𝑞 ∈ Strat△((𝑝, 𝑄, 𝑄∗)d, 𝑒)

positive conjunct

[𝑝, 𝑞]∧
a

𝑢 [𝑝, {𝑞}]a 𝑒′ = upd(𝑢, 𝑒) ∈ WinG△
a ([𝑝, {𝑞}]a)

⟨𝛼⟩𝜑 ∈ Strat△([𝑝, {𝑞}]a, 𝑒′)
⟨𝛼⟩𝜑 ∈ Strat△([𝑝, 𝑞]∧

a, 𝑒)

negative conjunct

[𝑝, 𝑞]∧
a

𝑢 [𝑞, {𝑝}]a 𝑒′ = upd(𝑢, 𝑒) ∈ WinG△
a ([𝑞, {𝑝}]a)

𝑝 ≠ 𝑞 ⟨𝛼⟩𝜑 ∈ Strat△([𝑞, {𝑝}]a, 𝑒′)
¬⟨𝛼⟩𝜑 ∈ Strat△([𝑝, 𝑞]∧

a, 𝑒)

Figure 5.3: Rules to derive distinguishing formulas from winning attack strategies.

The base case of the definition is the rule for conjunction answers at (𝑝,∅,∅)d
It yields the strategy formula ⊤, which trivially distinguishes any 𝑝 from the
empty set.

The correctness proof for G△ proceeds basically as with the bisimulation
energy game GB , establishing soundness as in Lemma 4.1 and completeness
as in Lemma 4.2. Proofs can be found in Bisping (2023c). There are two minor
definitional nuances between the presentation here and there, upon which we
will comment in Remark 5.2.



5.1. The Strong Spectroscopy Game 95

84 Proof in Lemma 2, 3, and 4 of Bisping (2023c).

85 Proof in Lemma 5 of Bisping (2023c).

Lemma 5.1 (Distinction soundness). If 𝑒 ∈ WinG△
a ([𝑝, 𝑄]a), then there is 𝜑 ∈

Strat△([𝑝, 𝑄]a, 𝑒) with 𝜑 ∈ Ostrong
𝑒 , 𝑝 ∈ J𝜑K and 𝑄 ∩ J𝜑K = ∅.84

Lemma 5.2 (Distinction completeness). If there is 𝜑 ∈ Ostrong
𝑁 with 𝑝 ∈ J𝜑K

and 𝑄 ∩ J𝜑K = ∅, then 𝑁 ∈ WinG△
a ([𝑝, 𝑄]a).85

Taken together, Lemma 5.1 and Lemma 5.2 prove that the strong spectroscopy
game G△ precisely characterizes the strong equivalence spectrum Nstrong.

Theorem 5.1 (Nstrong-characterization). 𝑝 ⪯O𝑁
𝑞 for 𝑁 ∈ Nstrong precisely if

the defender wins G△ for the attacker starting from [𝑝, {𝑞}]a with budget 𝑁 .

Thus, we can solve the spectroscopy problem (Problem 1) by computing
Nstrong

𝑝,𝑞 = Nstrong ∖ WinG△
a ([𝑝, {𝑞}]a).

Remark 5.2 (Differences to conference version). As mentioned in Remark 3.1,
Bisping (2023b) uses a slightly different pricing, where expr(⊤) = ê2. This
difference is reflected in the game by Definition 5.1 charging −ê2 for conjunc-
tions after the defender conjunction positions instead of before. With this, the
attacker wins [𝑝,∅]a 0 (𝑝,∅,∅)d with budget 0, while the original definition
in Bisping (2023b) would cost them ê2 for [𝑝,∅]a −ê2 (𝑝,∅,∅)d.

Also, Bisping (2023b) defines the spectrum coordinates by giving the expr
function instead of an O𝑁∈N hierarchy.

The conference paper results apply to the present presentation mutatis
mutandis. However, we will achieve better complexity results in the next sec-
tion, thanks to Lemke (2024).

5.1.3 Complexity

As expected, the bigger spectroscopy game leads to exponential runtimes.
This comes as no surprise, for we have already discussed in Section 3.3.3 that
the spectroscopy problem on the whole strong spectrum is PSPACE-hard.

Theorem 5.2 (Strong spectroscopy complexity). Given a transition system S ,
the spectroscopy problem for the Nstrong-spectrum can be solved by the game
approach in exponential time and space with respect to the state space size |P|.

Proof. According to Theorem 5.1, we can solve the spectroscopy problem for
the Nstrong-spectrum by deciding the winning budgets of the strong spec-
troscopy game GS

△ on S = (P,Act, −→). We instantiate the winning budget
complexity of Lemma 4.5 for the case 𝑑 = 6 with the size of G△ according to
Definition 5.1.

The number of attacker main positions is bounded by |P| ⋅ 2|P |. The num-
ber of conjunction moves and defender conjunction positions is bounded by
|P| ⋅ 3|P |.

The maximal out-degree for attacker positions is in O(2|P |), which domi-
nates that of defender conjunction positions of O(|P|),
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This leads to 𝑜 in O(2|P |) and to |𝐺△| in O(|P| ⋅3|P |). Filling in the time
bounds of Lemma 4.5 yields:

𝑂( 𝑜 ⋅ |𝐺|2⋅𝑑 ⋅ (𝑑2 + |𝐺|𝑑−1 ⋅ 𝑑) )
= 𝑂( (2|P |) ⋅ (|P| ⋅ 3|P |)2⋅6 ⋅ (62 + (|P| ⋅ 3|P |)6−1 ⋅ 6) )
= 𝑂( 2|P | ⋅ |P|12 ⋅ 312|P | ⋅ |P|5 ⋅ 35|P | )
= 𝑂( |P|17 ⋅ 2|P | ⋅ 317|P | ).

For space complexity, the approach arrives at O(|P|6 ⋅ 36|P |).

Still, there are ways to decrease the complexity of the algorithm and thus
increase applicability. We will explore these in the next section.

5.2 Clever Games on Subgraphs

We can exploit properties of the equivalences to focus on simpler variants of
the spectroscopy game.

1. Properties of bisimilarity allow to reduce the game graph size without
losing information.

2. Since the specific coordinates in Figure 3.8 only use 0, 1, and ∞ in
components, we can employ Lemma 4.6 to slightly improve complexity
bounds.

3. With more specific equivalences in mind, we can also focus on sub-
graphs of the spectroscopy game G△ in order to obtain better bounds.

Section 5.2.1 will first discuss how parts of the game graph can be pruned
thanks to properties of bisimilarity. Then, we will use all listed tricks in the
“clever” strong spectroscopy game in Section 5.2.2. In the subsequent Sec-
tion 5.3, we will take the last point to the extreme by instantiating the spec-
troscopy game down to only decide single equivalences.

5.2.1 Pruning with Logic

We can exploit that the spectroscopy game is a bisimulation game by Propo-
sition 5.1 to reduce game graph size. In particular, we will profit from the
properties of bisimilarity being symmetric and transitive.

Lemma 5.3 (Symmetry defense). On a strong spectroscopy game, 𝑝 ∈ 𝑄 implies
Wina([𝑝, 𝑄]a) = ∅.

Proof. This is a contrapositive consequence of Lemma 5.1: As soon as 𝑄 con-
tains a state bisimilar to 𝑝, there cannot be a distinguishing formula for them
byTheorem 2.1. This is the case here because 𝑝 ∈ 𝑄 and 𝑝 ∼B 𝑝 by Lemma 2.1.
Thus, there cannot be 𝑒 ∈ Wina([𝑝, 𝑄]a).
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86 The reported numbers are produced by sbt
"shared/run sizemark --strong-game".

G△
|𝐺| = 1 199 904

| | = 6 489 300

symmetry-pruned
|𝐺| = 241 419

| | = 1 291 824

bisim-minimized
|𝐺| = 661 271

| | = 3 523 944

bisim-minimized,
symmetry-pruned

|𝐺| = 67 703
| | = 348 474

Figure 5.4: Example sizes of a spectroscopy
game with and without pruning on Peterson’s
mutex system.

87 This interplay can already be seen on
the bisimulation game. Figure 2.15 contains
a big region after [tab, qab] and [tab, qab].
Bisimulation minimization of the input sys-
tem would shrink this region as tab ∼B
qab. The two positions would be merged into
[{tab, qab}, {tab, qab}]. But this is a symmet-
ric position! Therefore, we can drop this part
altogether.

For the game graph, this means that we do not need to consider any outgoing
moves of [𝑝, {𝑝} ∪ 𝑄]a-positions. They will not lead to attacker wins anyway.
All game graph parts that are only reached through such positions can be
disregarded.

Another important trick to reduce game size is to first apply bisimulation-
minimization to the transition system and then solely construct the spec-
troscopy game for the minimized system, GS/∼B

△ . This approach is sound by
the following lemma.

Lemma 5.4 (Quotienting by bisimilarity). The attacker wins [𝑝, {𝑞}]a on GS
△

with 𝑒 precisely if they win [[𝑝]∼B
]a, {[𝑞]∼B

} on GS/∼B△ .

Proof. By Proposition 2.4, 𝑝 ∼B [𝑝]∼B
and 𝑞 ∼B [𝑞]∼B

on the merger of S and
S/∼B. Therefore, the pairs each fulfill the sameHML formulas byTheorem 2.1,
which implies equal distinguishing formula sets. We can use Lemma 5.1 and
Lemma 5.2 to translate these sets to and from the winning budgets.

Example 5.4 (Somemeasurements). Both tricks of pruning “symmetric” parts
(Lemma 5.3) and pre-minimization by bisimilarity (Lemma 5.4) make an effec-
tive difference for the applicability of the spectroscopy approach:

tool.benchmark.Sizemark uses a small example system from Bisping
(2023b) modelling Peterson’s mutual exclusion algorithm.86 The system has
only |P| = 20 states, but a lot of nondeterminism due to saturation with
internal behavior.

Figure 5.4 lists the sizes of game graphs on this system. The default spec-
troscopy game at the top has roughly 1200 thousand game positions.

Pruning symmetric parts removes roughly four fifths of the graph (leaving
241 thousand positions).

Only applying the bisimulation minimization roughly halves the graph
(leaving 661 thousand positions). The bisimulation reduction is surprisingly
effective, given that the bisimulation minimized Peterson system still has 19
states, that is, only one fewer than the original system. On the other hand,
bisimilar states are precisely those that allow the biggest space of distinctions,
blowing up the game.

Interestingly, the combination of both tricks reduces the game graph to
67 thousand positions, roughly 5 % of the original size. (If the effects of both
minimizations were only multiplicative, the number would be around 133
thousand states.) This over-proportionate effect on the one hand has to do
with the general exponentialities of the game graph, but also with the fact
that bisimulation minimization increases the instances where pruning is ap-
plicable.87

The implementations (Chapter 8) sometimes use small additional tricks for
pruning. For instance, one can leave out observation moves behind [𝑝,∅]a
positions and finish the game optimally by conjunction.

https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/tool/benchmark/Sizemark.scala
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88 Proof in Theorem 2 of Bisping (2023c).

So far, the optimizations have been lossless in the sense that we do not
lose any information on the distinguishability of processes. If we are willing
to lose precision, additional reductions of the game graph are possible.

5.2.2 The Clever Game

We can become more clever by looking one step ahead.
The spectroscopy game G△ of Definition 5.1 may branch exponentially

with respect to |𝑄| at conjunction challenges after [𝑝, 𝑄]a. For an efficient
implementation, it is desirable to not do that.

Given the spectrum we are interested in, we can drastically limit the sen-
sible attacker moves to four options by a little lookahead into the enabled
actions Ini(𝑞) of 𝑞 ∈ 𝑄 and Ini(𝑝).

In the following, we will focus on the lower-resolution sub-spectrum
N̂strong ⊆ {0, 1, ∞}6 ⊆ Nstrong, where dimensions 3, 4, and 5 of modal depth
for revivals, positive and negative conjuncts can only appear in certain
combinations.

Definition 5.3 (Simpler strong spectrum). The simpler strong spectrum, N̂strong,
is defined as

N̂strong ≔ {𝑁 ∈ {0, 1, ∞}6 ∣ 𝑁4 ≤ 𝑁3 ∧ (𝑁5 = ∞ ⟶ 𝑁3 = 𝑁4)}.

Observe that all the coordinates of the strong linear-time–branching-time
spectrum (Figure 3.8) are still covered by the simpler spectrum.

Definition 5.4 (Clever spectroscopy game). The clever spectroscopy game G▴,
is defined exactly like the previous spectroscopy game of Definition 5.1, with
the restriction of the conjunction challenges

[𝑝, 𝑄]a 0
▴ (𝑝, 𝑄 ∖ 𝑄∗, 𝑄∗)d with 𝑄∗ ⊆ 𝑄,

to situations where 𝑄∗ is one of the four choices

• ∅ – no revivals,
• {𝑞 ∈ 𝑄 ∣ Ini(𝑞) ⊆ Ini(𝑝)} – enabledness-dominated revivals,
• {𝑞 ∈ 𝑄 ∣ Ini(𝑝) ⊆ Ini(𝑞)} – enabledness-dominating revivals, or
• {𝑞 ∈ 𝑄 ∣ Ini(𝑝) = Ini(𝑞)} – enabledness-matching revivals.

The idea here is that the attacker only thinks about certain partitionings:
Those where the 𝑄∗-revival deals with parts of 𝑄 that cannot be discharged
through failure or readiness observations. The usage of Ini(⋅) is comparable
to a small look-ahead into the possibilities to win through observations inside
the conjunction.

Theorem 5.3 (Correctness of cleverness). For 𝑁 ∈ N̂strong, the attacker wins
G▴ from [𝑝0, 𝑄0]a with energy 𝑁 precisely if they win G△ from [𝑝0, 𝑄0]a with
energy 𝑁 .88
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G▴
|𝐺▴| = 1020

| ▴| = 4774

symmetry-pruned
|𝐺▴| = 776

| ▴| = 3035

bisim-minimized
|𝐺▴| = 853

| ▴| = 3623

bisim-minimized,
symmetry-pruned

|𝐺▴| = 664
| ▴| = 2363

Figure 5.5: Sizes of clever spectroscopy games
with and without pruning on Peterson’s mutex
system.

89 The blow-up on Peterson’s mutex is pre-
cisely the argument I made in the introduction
of Bisping (2023b) for why one has to move
beyond the original spectroscopy algorithm of
Bisping et al. (2022). Therefore, the origi-
nal/deprecated approach also is not present in
this thesis.

Theorem 5.4 (Complexity of cleverness). Given a transition system
S = (P,Act, −→), the spectroscopy problem for the simpler N̂strong-spectrum is
solved by the game approach in 𝑂(|P|13 ⋅ 212|P |) time and 𝑂(|P| ⋅ 2|P |) space,

Proof. We instantiate the “flattened”winning budget complexity of Lemma 4.6
for the case 𝑑 = 6 with the size of G▴ according to Definition 5.4.

Now, the number of all game positions is bounded by |𝐺▴| ∈ O(|P| ⋅ 2|P |).
Concerning the maximal out-degree, now, defender conjunction positions

are dominant, 𝑜
▴

∈ O(|P|). Inserting the parameters in the time bounds of
Lemma 4.6 yields:

𝑂( 𝑜
▴

⋅ |𝐺▴|2⋅𝑑 ⋅ (𝑑2 + 3𝑑−1 ⋅ 𝑑))
= 𝑂( (|P|) ⋅ (|P| ⋅ 2|P |)12 ⋅ (62 + 35 ⋅ 6) )
= 𝑂( |P|13 ⋅ 212|P | ).

For space complexity, only game positions are relevant, O(|𝐺▴| ⋅ 3𝑑−1 ⋅ 𝑑) =
O(|P| ⋅ 2|P |).

Example 5.5 (More measurements). Let us see how the “clever game” adds up
with the pruning effects on the Peterson example of Example 5.4.

Figure 5.5 is the lower part of a cube of possible game graph optimizations,
where Figure 5.4 has already provided the upper part.

We can directly observe that G▴ is smaller than G△ by a factor of more
than 1000, with 1020 positions instead of 1 199 904. This is due to the high
nondeterminism of the Peterson system, which leads to big 𝑄-sets in [𝑝, 𝑄]a-
positions. These entail exponentially many conjunction moves in G△, which
are absent in the G▴ subgraph.

The tricks of bisimulation minimization and pruning still pay off, reducing
the game positions to 65 % of the unpruned game. This is way less effective
than in Example 5.4 (where this factor has been 5 %), because the savings are
not boosted by exponentialities.

Still, it makes sense to combine all three optimizations. All in all, we have
reduced the number of positions by a factor of 1800, and the number of moves
by factor 2700.

Especially, the cleverness has paid off. Without these tricks, the approach
would not be applicable to systemswith relevant nondeterminism due to com-
munication.89

5.3 Deciding Individual Equivalences

As we have seen, the strong spectroscopy characterizes the spectroscopy
problem and each individual equivalence (and preorder). This section is
about the feasibility to decide individual preorders using the spectroscopy
game.

The core idea behind Section 5.3.1 is to derive a reachability game accord-
ing to Definition 4.4, starting with an energy level from the strong spectrum,



100 Chapter 5. Spectroscopy of the Strong Equivalence Spectrum

Definition 3.8. Then, Algorithm 2.1 can be employed to decide player winning
regions of the game and thus the equivalence.

Of course, in this situation, one wants to avoid complexities that are part
of the spectroscopy game only to capture other equivalences. Section 5.3.2
will regain polynomiality for the P-easy portion of equivalence problems.

5.3.1 Deriving Equivalence Games

Let us first explicate how to characterize equivalences through reachability
games derived according to Definition 4.4.

Definition 5.5 (Derived strong equivalence games). Given a system S =
(P,Act, −→), a strong notion of equivalence 𝑁 ∈ Nstrong, and a pair of states
𝑝, 𝑞, the derived 𝑁 -preorder game GS,𝑝,𝑞

△𝑁 is defined as the part of the reachabil-
ity game (GS

△)𝑅 derived from the spectroscopy game under starting position
([𝑝, {𝑞}]a, 𝑁).

We thus receive a game characterization for every equivalence, generalizing
Stirling’s result of the bisimulation game from Theorem 2.2.

Theorem 5.5 (Parametric characterizations). 𝑝 ⪯ON
𝑞 precisely if the defender

wins the 𝑁 -preorder game GS,𝑝,𝑞
△𝑁 from ([𝑝, {𝑞}]a, 𝑁).

Proof. By Theorem 5.1, 𝑝 ⪯O𝑁
𝑞 implies that the defender wins GS

△
from [𝑝, {𝑞}]a when the attacker starts at energy 𝑁 . In other words,
𝑁 ∉ Wina([𝑝, {𝑞}]a) for GS

△. Lifted via Proposition 4.4, this implies
([𝑝, {𝑞}]a, 𝑁) ∉ Wina for the derived reachability game (GS

△)𝑅. By Defi-
nition 5.5, the defender thus wins GS,𝑝,𝑞

△𝑁 . As the proof steps work in both
directions, this completes the proof.

The same reasoning works with the clever game version G▴, restricted to the
N̂strong-spectrum used in Theorem 5.3.

Using Algorithm 2.1, our results entail decision procedures for each in-
dividual equivalence of the strong spectrum. Of course, it makes sense for
algorithms to employ the clever game and pruning.

Example 5.6 (Checking equivalences). The following processes are two of the
more complex ones of the separating examples by van Glabbeek (2001, p. 59).
They are equal with respect to ready traces, but not for simulation-like and
possible-future-like equivalences.

Interactive model on equiv.io. ABCACB = a.(b.d + c.e) + a.(c.f + b.g)
ABC = a.(b.d + c.e + c.f + b.g)

@check trace, ABCACB, ABC

@check ready-trace, ABCACB, ABC

@check simulation, ABCACB, ABC

https://equiv.io/#code=
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Figure 5.6: Pruned clever strong spectroscopy game below position
[ABCACB, {ABC}]a instantiated to starting energy T = (∞, 0, 0, 0, 0, 0) to
decide trace equivalence.

90 Incidentally, the answer to the question how
many positions this spectroscopy game would
have is 42.

@check impossible-future, ABCACB, ABC

@check bisimulation, ABCACB, ABC

The @check keyword performs individual comparisons on equiv.io. Invoking
the check for traces, for instance, yields the following output:

@check trace, ABCACB, ABC

- "States are equivalent."

The T-preorder game derived from the (pruned clever) spectroscopy game
under [ABCACB, {ABC}]a is depicted in Figure 5.6. Each position is won by
the defender (hinted at by the positions being colored in blue).

Interestingly, the derived reachability game of Figure 5.6 has fewer posi-
tions than the pruned clever spectroscopy game below [ABCACB, {ABC}]a
would have.90

As the derived game positions are obtained through products of original po-
sitions and energies, one might assume the derived preorder games to be way
bigger than the pure spectroscopy game. But for the named notions, this is
usually not the case because of two aspects:

The first important fine point is that many notions have ∞-entries and
that ∞ − 1 = ∞. For instance, in the derived bisimulation game, starting

https://equiv.io
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Figure 5.7: The subgraph of Figure 5.6 that actually is used in equiv.io, disre-
garding some attacker options.

at (∞, ∞, ∞, ∞, ∞, ∞), all positions will remain at this energy level. Thus,
the derived bisimulation game GS,𝑝,𝑞

△𝐵 has isomorphic positions to G△ under
[𝑝, {𝑞}]a.

The other point to consider is that the game is cut off at exhausted ener-
gies. Therefore, 0-entries in components lead to smaller games, only using
subgraphs of the spectroscopy game.

Only 1-components grow the derived game graph. In principle, each com-
ponent that starts at 1 instead of ∞ or 0 might roughly double the graph size.

The equiv.io implementation does prune some attacker moves that cannot
be winning, in particular non-empty conjunctions if the conjunction budget
is at 0. Therefore, the subgraph used by the tool for Example 5.6 in reality is
the one in Figure 5.7.

Still, nondeterminism in the transition systemmight lead to exponentially-
sized derived games. Especially in the case of bisimilarity and similarity,
such a blow-up is not necessary. As Chapter 4 has shown, they should be
P-easy.

5.3.2 Regaining Polynomiality in Derived Games

So far, the derived games include the exponentiality due to the subset con-
struction. But often, we can restrict the attacker to only use a polynomially-

https://equiv.io
https://equiv.io
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91 If we were to allow 𝑘-step equivalences as in
Figure 4.5, 𝑘 would also become a factor.

sized portion of the game. If they have energy for unbounded conjunctions,
this restriction will not affect their wins.

Proposition 5.2 (Defender restriction). If the attacker wins ([𝑝, 𝑄]a, 𝑒) in a
derived preorder game G△𝑁 or G▴𝑁 , they also win ([𝑝, 𝑄′]a, 𝑒) for all 𝑄′ ⊆ 𝑄.

Proof. If the attacker wins [𝑝, 𝑄]a with 𝑒 in a spectroscopy game, they also
win [𝑝, 𝑄′]a with 𝑒 for all 𝑄′ ⊆ 𝑄. This is a side benefit of the spectroscopy
characterization (Lemma 5.1 and 5.2) through distinctions, as 𝑄 ∩ J𝜑K = ∅
implies 𝑄′ ∩ J𝜑K = ∅ for any 𝜑. We can lift this result immediately to the
derived preorder games as in Theorem 5.5.

Lemma 5.5 (Conjunctive attacks). If the attacker wins ([𝑝, 𝑄]a, 𝑒) with |𝑄| > 1
in a derived preorder game with 𝑒 ≥ (0, ∞, ∞, ∞, 0, 0), then they can also win
without using any observation moves of the form ([𝑝, 𝑄]a, 𝑒) ([𝑝′, 𝑄′]a, 𝑒′).

Proof. Any observation move ([𝑝, 𝑄]a, 𝑒) ([𝑝′, 𝑄′]a, 𝑒′) must be due to
a transition 𝑝 𝛼−→ 𝑝′ with 𝑄 𝛼−→ 𝑄′. Instead of the observation, the at-
tacker can move to a conjunction ([𝑝, 𝑄]a, 𝑒) ((𝑝, 𝑄,∅)d, 𝑒). After the
defender choice of 𝑞 ∈ 𝑄, the game continues with the same energy …
([𝑝, 𝑞]∧

a, 𝑒) ([𝑝, {𝑞}]a, 𝑒) ([𝑝′,Der(𝑞, 𝛼)]a, 𝑒′), thanks to the sufficient
energy budget. As Der(𝑞, 𝛼) ⊆ 𝑄′, we can use Proposition 5.2.

Thus the closure of a logic under conjunctions allows us to use a game that,
practically, leaves out many formulas, without losing distinctiveness. This
trick is basically the same as in the crucial ⟨𝛼⟩-case of Lemma 2.7 that “game
HML” O⌊B⌋ and HML are equally distinctive.

As a consequence, we can obtain a polynomial complexity bound for no-
tions that do not restrict conjunctions and positive conjuncts.

Lemma 5.6 (Polynomial equivalence checking). For a strong notion
𝑁 ∈ {0, 1, ∞}6 with 𝑁 ≥ (0, ∞, ∞, ∞, 0, 0), and a system (P,Act, −→),
one can decide 𝑝 ⪯O𝑁

𝑞 in polynomial time, by computing who wins the
𝑁 -preorder game in O(|P| ⋅ |−→|) time and space.

Proof. We can use the clever version of the strong spectroscopy game G▴ to
decide individual equivalences for these coordinates by Theorem 5.5 andThe-
orem 5.3. For 𝑁 ≥ (0, ∞, ∞, ∞, 0, 0), this also works on the subgraph where
nondeterminism is resolved immediately thanks to Lemma 5.5.

We want to use that, according to Proposition 2.9, deciding a reachability
game (𝐺, 𝐺d, ) takes O(| |) time and O(|𝐺|) space.

We observe that the {0, 1, ∞}-valued energy components in the game
might only create a constant-factor increase in the size of G▴𝑁 , compared to
the underlying game G▴.91 Therefore, the following arguments focus on the
latter.

There are at most |P|2 positions of the form [𝑝, {𝑞}]a. Whenever they
reach [𝑝′, 𝑄′]a with |𝑄′| > 1, Lemma 5.5 allows us to prune away all observa-
tion moves deriving from there, and return to an attacker main position with
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92 This is with the understanding that one can
ignore storage space for the positions: One can
use pointers to 𝑄′-sets in the attacker and de-
fender positions, and not store them verbatim.
This saves the bound as there can only be |−→|
such sets of size |𝑄′| > 1. So, overall, these
sets also will take up O(|P | ⋅ |−→|) space.
93 The reported numbers are produced via
sbt "shared/run eqchecks --strong-game"
for the pair L50/R50 by tool.benchmark.
LTBTSEquivalenceChecks.

|𝑄″| ≤ 1. The intermediate [𝑝′, 𝑄′]a-positions are a function of initial 𝑞 and
the transitions from 𝑝, and thus collectively bounded by O(|P| ⋅ |−→|), which
bounds attacker positions as a whole.

In the clever spectroscopy game G▴, there is a maximum of only five de-
fender positions per such attacker position. Also, the subsequent attacker
conjunct positions, bounded by |P|2, do not affect the bound.

For the moves, only observation moves and conjunct answers can impact
complexity. The observations are bounded in O(|P| ⋅ |−→|), and the conjunct
answers in O(|P|), which is dominated by the first.

Inserting our bounds in Proposition 2.9, we obtain time and space com-
plexity of O(|P| ⋅ |−→|).92

Example 5.7 (Measurements of derived games). Let us examine how the in-
stance game sizes behave on the games of Example 5.6! Figure 5.8 maps out
the sizes of game instantiations for the preorders of the strong spectrum as in
Figure 3.8.93 Each game is derived from the clever spectroscopy game, with
pruning and with capped nondeterminism where possible; to enable equiv-
alence checks, the games combine the parts under [ABCACB, {ABC}]a and
under [ABC, {ABCACB}]a. The game size is defined as the sum of positions
and moves, |G| = |𝐺| + | |. Red parts symbolize bigger game graphs.

The data match our thoughts on game sizes in Section 5.3.1. For instance,
around the trace game G▴T, we can observe that zero-components usually
reduce the game graph size. Betweenmutual simulationG▴1S and bisimulation
G▴B, one can see that ∞-components and 0-components are usually better
than 1-components. The game for ready traces G▴RT, where all dimensions
play a role, is the most costly.

5.4 Discussion

With this chapter, we have broadened the spectroscopy game approach of
Chapter 4 to account for the full strong spectrum of Chapter 3, thereby solving
its spectroscopy problem (Problem 1).

One game, many notions. The critical ingredient has been to cover trace-like
observations through a subset construction on states (Idea 8). This construction
can also be viewed game-theoretically as a way to model an attacker with im-
perfect information about the exact choices the defender makes in simulating
steps. The conjunction and negation points then describe moves where the
attacker can obtain this information. Fahrenberg & Legay (2014) employ this
alternative view in their game description for quantitative variants of strong
equivalences.

All prior publicationswith generalized game characterizations of the spec-
trum describe a hierarchy of reachability games—as opposed to our view of
one energy game per system.

The general idea of giving generalized games for the strong spectrum first
appears in Shukla et al. (1996). It receives a fuller treatment by Chen & Deng

https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/tool/benchmark/LTBTSEquivalenceChecks.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/tool/benchmark/LTBTSEquivalenceChecks.scala
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|G▴B| = 105
∞, ∞, ∞, ∞, ∞, ∞

|G▴2S| = 200
∞, ∞, ∞, ∞, ∞, 1

|G▴RS| = 248
∞, ∞, ∞, ∞, 1, 1

|G▴RT| = 288
∞, ∞, ∞, 1, 1, 1

|G▴FT| = 216
∞, ∞, ∞, 0, 1, 1

|G▴R| = 126
∞, 1, 1, 1, 1, 1

|G▴PF| = 144
∞, 1, ∞, ∞, ∞, 1

|G▴IF| = 105
∞, 1, 0, 0, ∞, 1

|G▴1S| = 95
∞, ∞, ∞, ∞, 0, 0

|G▴RV| = 96
∞, 1, 1, 0, 1, 1

|G▴F| = 96
∞, 1, 0, 0, 1, 1

|G▴T| = 20
∞, 0, 0, 0, 0, 0

|G▴E| = 8
1, 0, 0, 0, 0, 0

|G▴U| = 2
0, 0, 0, 0, 0, 0

Figure 5.8: Instance game sizes of Example 5.7.

(2008). Both publications, however, use word-transition moves for trace-like
equivalences. In algorithms, this is unfortunate, since most interesting sys-
tems allow infinitely long transition sequences: For finite-state systems, this
infinity appears as soon as there is a transition cycle. Therefore, the subset
construction (or imperfect-information view) is technologically superior. On
the side of theory, the link between moves in the game and conjunctions in
modal logics adds clarity to our construction. It reinforces the idea of Sec-
tion 3.3.2 that equivalence checking is, in a way, subtraction of satisfied for-
mulas.

Difference to original formulation. This chapter’s presentation improves
in several ways on my original spectroscopy games. The idea to alternate
state subsets for nondeterministic words and conjunction moves to eliminate the
blow-up is introduced by Bisping & Nestmann (2021). Our initial 2021 game is
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Figure 5.9: The author, discussing 3D energy
games with participants of D-CON’25.
(Photo: Nadine Karsten)

unable to correctly handle failure-traces and similar observations, which has
been corrected in Bisping et al. (2022), thanks to Jansen’s input. With respect
to Bisping et al. (2022), the presentation in this chapter has three advantages:

1. Bisping et al. (2022) uses a reachability game, on which we construct
distinguishing formulas. The formulas are then pruned on-the-fly to se-
lect those with minimal syntactic prices. Introduced by Bisping (2023b),
we now can perform the whole spectroscopy on energy vectors, thereby
making costly explicit formula construction optional.

2. Bisping et al. (2022)’s game has super-exponential out-degree for con-
junction moves. With the present formulation (from Bisping, 2023b),
we can achieve constant degree, using the cleverness of Section 5.2.2.

3. On a pure reachability game, one cannot easily instantiate to select the
subgraphs for individual equivalences as in Section 5.3.

Back tomany games. Thepoint of deriving equivalence games from the energy
game (Idea 9) connects the one-energy-game approach back to the hierarchy-
of-games approach of prior publications. With Section 5.3, the present chapter
has moved beyond the scope of Bisping (2023b). Interestingly, Section 5.3.2
shows that, by prioritizing conjunctions in derived simulation-like games, one
obtains O(|P| ⋅ |−→|) complexity, restoring the P-easiness of the preceding
chapter. For strong similarity, this matches the best known time bound, as
discussed in Section 3.3.3. For bisimilarity, however, partition refinement out-
performs the game approach.

We could go a step further in the polynomially-sized derivatives of the
spectroscopy game, and “bake together” the attacker main positions after ob-
servations with the following defender positions. This would (almost) arrive
at the game structure of last chapter’s bisimulation energy game! Conception-
ally, the following relation emerges: The bisimulation game GB of Chapter 2
is a shadow of the bisimulation energy game GB of Chapter 4, which in turn
is a shadow of the strong spectroscopy game G△ of the present chapter.

The dimensions of energy games allow us to encode different gameswithin
one game. This is analogous to stereoscopic pictures, decodable by 3D glasses
(Figure 5.9).

What's next? Continuing the trajectory of shadows, Part III of the thesis
will abstract further what we have been doing. The strong spectrum of equiv-
alences is usually too strong for the analysis of concurrent systems. Therefore,
wewill extend our approach to theweak spectrum of equivalences, accounting
for the nuances of silent 𝜏 -steps. This is of double relevance: Practical applica-
tions of concurrency theory tend to call for weak semantics, and nobody has
previously proposed generalized game characterizations for the weak spec-
trum, at all.
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6 Recharting the Weak
Silent-Step Spectrum

Related publications. This chapter is based on
parts of the draft “Deciding all behavioral
equivalences at once II: The silent-step
spectrum” (Bisping & Jansen, 2025) and of
“Characterizing contrasimilarity through
games, modal logic, and complexity” (Bisping
& Montanari, 2024). For a fuller presentation
of the spectrum of weak equivalences itself,
van Glabbeek (1993) is the authoritative work.
A gentler introduction to key concepts is
provided by Sangiorgi (2012).

Virtually all applications of concurrency theory use weak behavioral equiva-
lences, which can equate systems in spite of differing internal activity. There-
fore, it matters that we can lift our approach to also account for such equiva-
lences.

This chapter serves as a second round of preliminaries and context needed
for the spectrum of weak equivalences. Some things are more complicated in
the weak spectrum. For instance, we will be discussing eight weak forms of
bisimilarity.

At its heart, this chapter aims to find a modal spectrum characterization,
where HML grammar and pricing are designed in such a way that we can ap-
ply the spectroscopy approach in the following Chapter 7. The top element of
the weak spectrum will be the logic of stability-respecting branching bisimilar-
ity.

This is where the thesis arrives at “The linear time–branching time
spectrum II: The semantics of sequential systems with silent moves” (van
Glabbeek, 1993), already featured in Figure 1.1 of the introduction. We
will reframe a big chunk of it to fit our modal framework in Figure 6.5. In
particular, we try to be much more restricted in the use of special modalities
than the presentation of van Glabbeek (1993).

Idea 10: Taking a sublogic to weaken HML

We can use a subset of Hennessy–Milner logic to characterize most in-
teresting weak equivalences.

Section 6.1 provides some preliminaries and defines the HML subset
HMLSRBB, which will correspond to the notion of stability-respecting
branching bisimilarity. Section 6.2 illustrates the use of some of the weak no-
tions through small case studies from compiler verification and concurrency
theory. In Section 6.3, we unfold the hierarchy of modal characterizations
for the weak spectrum.
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Figure 6.1: Processes that we would like to
equate in weak equivalences (blue groups).
94 inductive LTS.LTS_Tau.silent_reachable
95 abbreviation LTS.LTS_Tau.soft_step

96 abbreviation LTS.LTS_Tau.stable_state

6.1 Weak Equivalences in General

For practical problems, the equivalences we have discussed so far usually are
too strong. They notice where in a process the internal action 𝜏 happens, that
is:

a ≁ 𝜏 .a ≁ 𝜏 .𝜏 .a ≁ 𝜏 .a.𝜏 ≁ a.𝜏
For real-world models, we want equivalences to disregard such kinds of in-
ternal behavior as “silent” when comparing processes, such that:

a ∼ 𝜏 .a ∼ 𝜏 .𝜏 .a ∼ 𝜏 .a.𝜏 ∼ a.𝜏

Equivalences with this feature are called weak, alluding to the fact that they
are less distinctive than the “strong” equivalences that treat 𝜏 like any other
action.

Figure 6.1 shows the (strong-bisimulation-minimal) transition system of
the example processes we would like to equate in weak equivalences.

The basic principle is that weak equivalences should maintain that some
internal behavior happening before or after a visible action does not make a
difference from the point of view of an observer. But this idea leads into a lot
of fine points.

6.1.1 Silent Transitions

To help us with our abstractions of weak activity, we use some additional
notation:

Definition 6.1 (Transition systems with internal activity). For a transition
systemS = (P,Act, −→)with an internal action 𝜏 ∈ Act, we call 𝜏−→-transitions
“silent” and define the following special transition relations plus HML modal-
ities, where Act ≔ Act ∖ {𝜏} denotes “visible” actions:

Internal transition relation 𝑝 ↠ 𝑝′ iff 𝑝 𝜏−→∗ 𝑝′, where 𝜏−→∗ is the reflexive
transitive closure of silent steps.94
The internal modality ⟨𝜀⟩𝜑 has 𝑝 ∈ J⟨𝜀⟩𝜑K iff there is 𝑝′ ∈ J𝜑K with
𝑝 ↠ 𝑝′.

Soft transition relation 𝑝 (𝛼)−−→ 𝑝′ iff 𝑝 𝛼−→ 𝑝′, or if 𝛼 = 𝜏 and 𝑝 = 𝑝′.95
We accompany it by the soft observation modality (𝛼)𝜑 with
𝑝 ∈ J(𝛼)𝜑K iff there is 𝑝′ ∈ J𝜑K with 𝑝 (𝛼)−−→ 𝑝′.

Weak word steps 𝑝 𝑤⃗−→→ 𝑝′ for 𝑤⃗ = (𝑤1𝑤2 … 𝑤𝑛) ∈ Act∗ iff there is a path
with 𝑝𝑖 ↠ 𝑤𝑖+1−−−→ 𝑝𝑖+1 for each 0 ≤ 𝑖 < 𝑛 such that 𝑝0 = 𝑝 and 𝑝𝑛 ↠ 𝑝′.

Stable state A state 𝑝 is called stable iff 𝑝 𝜏↛.96
In HML, we can use ¬⟨𝜏⟩⊤ to express stabilization.

Divergent state A state 𝑝 is called divergent iff it allows an infinite sequence
of 𝜏 -transitions, 𝑝 𝜏−→𝜔.

Again, we implicitly lift the relations to sets of states, that is, for instance,
𝑃 ↠ 𝑃 ′ (with 𝑃 , 𝑃 ′ ⊆ P) iff 𝑃 ′ = {𝑝′ ∈ P ∣ ∃𝑝 ∈ 𝑃 . 𝑝 ↠ 𝑝′}.

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/LTS.html#LTS.LTS_Tau.silent_reachable%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/LTS.html#LTS.LTS_Tau.soft_step%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/LTS.html#LTS.LTS_Tau.stable_state%7Cconst
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97 abbreviation LTS.LTS_Tau.weak_traces
98 The Isabelle theory has a slightly different
definition that also allows 𝜏s in the trace words,
which do not necessarily stand for proper 𝜏−→-
steps.
99 definition LTS.LTS_Tau.weakly_trace
_preordered

In upcoming definitions and facts, we use the convention that 𝛼 continues to
stand for elements of Act, while 𝑎 comes from Act = Act ∖ {𝜏}.

Example 6.1 (Weak steps). In Figure 6.1, the state 𝜏 .𝜏 .a allows the following
weak steps:

• Soft 𝜏 -transitions to itself and its immediate successor: 𝜏 .𝜏 .a (𝜏)−→ 𝜏 .𝜏 .a
and 𝜏 .𝜏 .a (𝜏)−→ 𝜏 .a. (But 𝜏 .𝜏 .a 𝜏↛ 𝜏 .𝜏 .a!)

• The internal transition 𝜏 .𝜏 .a ↠ a. (On top of the internal transitions
due to (𝜏)−→ ⊆ ↠.)

• The weak word transition 𝜏 .𝜏 .a a−→→ 0.
• Starting in a, all kinds of a-steps coincide: a a−→→ 0 and a (a)−→ 0 just as

a a−→ 0.

a, a.𝜏 and 0 are stable. No state is divergent.

Remark 6.1 (Just notation). Note that the notation for HML operators ⟨𝜀⟩ …
and (𝛼) … introduced in Definition 6.1 does not affect the expressiveness of
HML. To see why, assume notation for disjunction ⋁𝑖∈𝐼 𝜓𝑖 ≔ ¬ ⋀𝑖∈𝐼 ¬𝜓𝑖,
and for 𝑛-time application of an operator. Then, J⟨𝜀⟩𝜑K = J⋁𝑛∈ℕ⟨𝜏⟩𝑛𝜑K.
Also, J(𝜏)𝜑K = J⋁{𝜑, ⟨𝜏⟩𝜑}K and J(𝑎)𝜑K = J⟨𝑎⟩𝜑K.

On the other hand, note that our infinitary HML cannot express proper
divergence 𝑝 𝜏−→𝜔 on infinitary systems. This would demand an “observation
of infinite depth.” This clashes with the well-foundedness, which is implied by
the recursive grammar of Definition 2.11. On systems with finite branching
degree, however, the possibility of unbounded 𝜏 -trees and infinite 𝜏 -chains
coincides, and divergence can be captured modally by ⋀𝑛∈ℕ⟨𝜏⟩𝑛.

6.1.2 Weak Traces and Weak Bisimulation

It is quite straightforward how to lift traces from the strong setting of Defini-
tion 2.4 and Definition 2.5 to the weak setting: Allow internal ↠-behavior in
between.

Definition 6.2 (Weak traces, preorder, and equivalence). The set ofweak traces
of a state WeakTraces(𝑝) ⊆ Act∗ is defined as 𝑤⃗ ∈ WeakTraces(𝑝) iff there
is 𝑝′ such that 𝑝 𝑤⃗−→→ 𝑝′.97,98

Two states are weakly trace-preordered, 𝑝 ⪯WT 𝑞, if WeakTraces(𝑝) ⊆
WeakTraces(𝑞).99 As before, if both directions are maintained, the states are
called weakly trace-equivalent, 𝑝 ∼WT 𝑞.

The blue groups of states in Figure 6.1 are weakly trace equivalent. More-
over, they also are related by the stronger notions of weak bisimulation and
simulation.

Definition 6.3 (Weak simulation, preorder and equivalences). A relation,R ⊆
P × P , is called a weak simulation if, for each (𝑝, 𝑞) ∈ R,

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/LTS.html#LTS.LTS_Tau.weak_traces%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/LTS.html#LTS.LTS_Tau.weakly_trace_preordered%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/LTS.html#LTS.LTS_Tau.weakly_trace_preordered%7Cconst
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• if 𝑝 𝑎−→ 𝑝′ with 𝑎 ∈ Act , there is a 𝑞′ with 𝑞 ↠ 𝑎−→↠ 𝑞′ and (𝑝′, 𝑞′) ∈
R; and

• if 𝑝 𝜏−→ 𝑝′, there is a 𝑞′ with 𝑞 ↠ 𝑞′ and (𝑝′, 𝑞′) ∈ R.

Weak simulation preorder, weak simulation equivalence and weak bisimilar-
ity follow analogously to Definition 2.7:

• 𝑝 is weakly simulated by 𝑞, 𝑝 ⪯WS 𝑞, iff there is a weak simulation R
with (𝑝, 𝑞) ∈ R.

• 𝑝 is weakly similar to 𝑞, 𝑝 ∼WS 𝑞, iff 𝑝 ⪯WS 𝑞 and 𝑞 ⪯WS 𝑝.
• 𝑝 is weakly bisimilar to 𝑞, 𝑝 ∼OWB

𝑞, iff there is a symmetric weak sim-
ulation R (i.e. R = R−1) with (𝑝, 𝑞) ∈ R.

All three weak equivalences maintain that the small example processes of the
introduction to Section 6.1 are equal.

Example 6.2 (Weakly simulated philosophers). For the processes of Exam-
ple 2.1 (repeated in Figure 6.2), the weak traces would be WeakTraces(P) =
{(), a, b} = WeakTraces(Q). Consequently, P and Q are weakly trace-
equivalent, P ∼WT Q.

In Example 2.6, we have observed that the two processes are not
(strongly) similar because Q ⪯̸S P due to ⟨𝜏⟩ ⋀{⟨a⟩, ⟨b⟩}. Due to the
weakening, however, there is a weak simulation for this direction, namely:
{(Q, P), (qab, P), (q1, p1), (q2, p2)}. Therefore, P ∼WS Q! A mutual weak
simulation RPQ to justify this is drawn in dashed blue in Figure 6.2.

P

pa pb

p1 p2

𝜏 𝜏

a b

Q

qab

q1 q2

𝜏

a b

RPQ

Figure 6.2: A mutual weak simulation on the original philosopher example.

However, P and Q are not weakly bisimilar. The reason is that the left process
can weakly ↠-transition to a position where b is impossible, even if we would
allow for some more internal ↠-behavior in between. In HML, this difference
could be expressed by ⟨𝜀⟩¬⟨𝜀⟩⟨b⟩—we will turn to modal characterizations
soon.

Definition 6.4 (Abstractions). We say that a weak notion of equivalence W𝑁
abstracts a strong notion 𝑁 iff ⪯W𝑁 = ⪯𝑁 for all transition systems without
𝜏 -transitions.
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100 datatype HML_SRBB.hml_srbb

101 definition LTS.LTS_Tau.stability
_respecting

102 definition Branching_Bisimilarity.LTS
_Tau.branching_simulation

103 lemma Branching_Bisimilarity.LTS_Tau
.sr_branching_bisim_is_hmlsrbb

By this nomenclature, weak trace preorder, weak simulation preorder, and
weak bisimilarity are abstractions of their strong counterparts fromChapter 2.
But, as we will see in the next sections, there might be multiple abstractions
of the same strong notion.

6.1.3 HML of Stability-Respecting Branching Bisimilarity

As noted in Remark 6.1, our HML notation for weak observations does not
affect expressiveness—thus it still characterizes strong bisimilarity by Theo-
rem 2.1. To characterize weak equivalences, we have to select appropriate
subsets. We will use the following sublogic that, naturally, must be designed
to correspond to the strongest weak notion we will be interested in.

Definition 6.5 (Branching Hennessy–Milner logic). We define stability-
respecting branching Hennessy–Milner modal logic, HMLSRBB, over an
alphabet of actions Act by the following context-free grammar starting with
𝜑:100

𝜑 ∶≔ ⟨𝜀⟩𝜒 “delayed observation”
| ⋀{𝜓, 𝜓, ...} “immediate conjunction”

𝜒 ∶≔ ⟨𝑎⟩𝜑 with 𝑎 ∈ Act “observation”
| ⋀{𝜓, 𝜓, ...} “standard conjunction”
| ⋀{¬⟨𝜏⟩⊤, 𝜓, 𝜓, ...} “stable conjunction”
| ⋀{(𝛼)𝜑, 𝜓, 𝜓, ...} with 𝛼 ∈ Act “branching conjunction”

𝜓 ∶≔ ¬⟨𝜀⟩𝜒 ∣ ⟨𝜀⟩𝜒 “negative / positive conjuncts”

We consider the semantics of HMLSRBB to be given by Definition 2.12 and
Definition 6.1.

The name already alludes to HMLSRBB as a whole characterizing stability-
respecting branching bisimilarity, which is a comparably strong abstraction of
bisimilarity, a “strong weak bisimilarity,” so to speak.

Definition 6.6 (Stability). We call a relationR stability-respecting iff, for each
(𝑝, 𝑞) ∈ R with 𝑝 𝜏↛, there is some 𝑞′ with 𝑞 ↠ 𝑞′ 𝜏↛ and (𝑝, 𝑞′) ∈ R.101

Definition 6.7 (Branching bisimilarity). A symmetric relation R is a branch-
ing bisimulation if, for all (𝑝, 𝑞) ∈ R, a step 𝑝 𝛼−→ 𝑝′ implies (1) 𝛼 = 𝜏 and
(𝑝′, 𝑞) ∈ R, or (2) 𝑞 ↠ 𝑞′ 𝛼−→ 𝑞″ for some 𝑞′ and 𝑞″ with (𝑝, 𝑞′) ∈ R and
(𝑝′, 𝑞″) ∈ R.102

If there is a stability-respecting branching bisimulation R𝐵𝐵𝑠𝑟 with
(𝑝0, 𝑞0) ∈ R𝐵𝐵𝑠𝑟 , then 𝑝0 and 𝑞0 are stability-respecting branching bisimilar.

The power of Definition 6.5 to distinguish mirrors exactly the power of Defi-
nition 6.7 to equate:

Theorem 6.1 (HMLSRBB Hennessy–Milner theorem). HMLSRBB characterizes
stability-respecting branching bisimilarity, that is, there is a stability-respecting

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/HML_SRBB.html#HML_SRBB.hml_srbb%7Ctype
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/LTS.html#LTS.LTS_Tau.stability_respecting%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/LTS.html#LTS.LTS_Tau.stability_respecting%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Branching_Bisimilarity.html#Branching_Bisimilarity.LTS_Tau.branching_simulation%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Branching_Bisimilarity.html#Branching_Bisimilarity.LTS_Tau.branching_simulation%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Branching_Bisimilarity.html#Branching_Bisimilarity.LTS_Tau.sr_branching_bisim_is_hmlsrbb%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Branching_Bisimilarity.html#Branching_Bisimilarity.LTS_Tau.sr_branching_bisim_is_hmlsrbb%7Cfact


114 Chapter 6. Recharting the Weak Silent-Step Spectrum

104 lemma Branching_Bisimilarity.LTS_Tau
.sr_branching_bisimulated_transitive

branching bisimulation R with (𝑝, 𝑞) ∈ R precisely if there is no formula 𝜑 ∈
HMLSRBB with 𝑝 ∈ J𝜑K and 𝑞 ∉ J𝜑K.103
The paper proof in Bisping & Jansen (2025) proceeds quite similarly to other
Hennessy–Milner theorems, as showcased in Theorem 2.1.

The example process groups of Figure 6.1 are stability-respecting branch-
ing bisimilar, as desired. But branching bisimilarity is more distinctive than
weak bisimilarity:

Example 6.3 (The strength of branching). Compare Pab ≔ a + 𝜏 .b + b
and a subgraph-variant Pa𝜏b ≔ a + 𝜏 .b, where the b is only possible after
committing to its branch. The processes are not branching bisimilar as
⟨𝜀⟩ ⋀{(b), ⟨𝜀⟩⟨a⟩} distinguishes them. Intuitively, the formula expresses
that, right at the moment when b can happen, a is still (weakly) possible.

But the processes are weakly bisimilar, as weak bisimilarity does not care
about branching due to 𝜏 -steps that can also be achieved by visible actions. A
formal argument would be that idP∪{(Pab, Pa𝜏b), (Pa𝜏b, Pab)} is a symmetric
weak simulation.

Remark 6.2 (An equivalence indeed). It is a popular anecdote among those
who know branching bisimilarity that, originally, a trivial proof of transi-
tivity was “assumed,” but turned out not to exist. Six years after branching
bisimilarity’s inception, “Branching bisimilarity is an equivalence indeed!” by
Basten (1996) closed the gap with a proof that is surprisingly complex.

In our setting, the transitivity is an immediate corollary of having a modal
characterization (Theorem 6.1).104 This is one of the perks of modal charac-
terizations, indeed (cf. Section 2.3.3).

6.2 Case Studies—and the Need for Other Weak
Equivalences

In the world of weak equivalences, many things are a little more complicated
than in the strong spectrum. We have already observed that bisimulation
equivalence can be abstracted to branching bisimulation and weak bisimula-
tion.

In this section, we use two minimal case study examples to see how one
can arrive at even more abstractions of bisimulation and of failure equiva-
lence.

Next chapter’s Section 7.2 will pick up on the examples to test that the
spectroscopy algorithm can indeed simplify a researcher’s life.

6.2.1 Parallelizing Compilers—and Contrasimulation

Most of computer speed up in the last two decades has been due to paral-
lelization of computation. Compilers will usually drift and parallelize sequen-
tial commands of a program. The claim behind such optimizations is that

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Branching_Bisimilarity.html#Branching_Bisimilarity.LTS_Tau.sr_branching_bisimulated_transitive%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Branching_Bisimilarity.html#Branching_Bisimilarity.LTS_Tau.sr_branching_bisimulated_transitive%7Cfact
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105 In other regards, the program obviously dif-
fers. It is the intention to change aspects such as
performance!
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Figure 6.3: Transition systems representing
PSeq and PPara.

the communication behavior of the program stays the same.105 So, naturally,
the original program and the optimized program should be equivalent with
respect to some notion of equivalence.

Bell (2014) ventures to prove that certain parallelizations of loops during
compilation are sound. This runs into the problem that weak bisimilarity is
too strong for this use case. The following example (adapted from Bell, 2013)
shows why.

Example 6.4 (Parallelized execution). Consider the following sequential pro-
gram PSeq, which computes x (with possible values A and B), prints a header
(output:) and then the computed value:

x = compute_A_or_B()

print("output:")

print(x)

A parallelization would find that the rendering of the header “output:” is
independent of the computation of x and can thus be parallelized to PPara:

x = compute_A_or_B() || print("output:")

print(x)

The || connector is supposed to mean a parallel execution of commands that
synchronizes the branches at the end. In real-world programming languages,
this would happen through spawning and joining subprocesses, future ob-
jects, or async segments.

Figure 6.3 shows the transition systems of the two programs. The 𝜏 -steps
mark internal computation or synchronization. In particular, compute_A_or_B
turns into a 𝜏 -step. The action printO stands for print("output:") announc-
ing the coming output, and printA and printB are the values of x that are
actually produced by print(x).

Clearly, PSeq and PPara have the sameweak traces. But they do not weakly
simulate each other: PPara can perform a printO−−−→-transition, immediately after
which printA and printB are weakly possible at pab. The sequential PSeq has
no such states.

Bell (2013) proposes “eventual bisimilarity” as a one-off bisimulation-like no-
tion to equate PSeq and PPara. In Bisping & Montanari (2024), we discuss how
two more standard notions from the original spectrum neatly equate the pro-
cesses: Stable bisimilarity and contrasimilarity.

Definition 6.8 (Stable bisimilarity). A stable bisimulation is a relation R
where, for all (𝑝, 𝑞) ∈ R with 𝑤⃗ ∈ Act and 𝑝 𝑤⃗−→→ 𝑝′, there is a 𝑞′ with
𝑞 𝑤⃗−→→ 𝑞′, and, in case 𝑝′ is stable, moreover 𝑞′ 𝜏↛ and (𝑝′, 𝑞′) ∈ R ∩ R−1.
The stable bisimilarity ∼SB is defined as in Definition 6.3.

On the programs of Example 6.4, there is a stable bisimulation, connecting
PSeq and PPara as well as the stable states with matching positions. Intuitively,
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106 Note that 𝑝′ and 𝑞′ swap sides in the con-
sequent!

107 Quote adapted to the notation of the present
thesis.

stable bisimilarity is allowed to “skip” intermediate states that would break the
bisimulation—such as pab in our example.

As we argue in Bisping & Montanari (2024), stable bisimilarity, in many
ways, is better understood not as a stable variant of bisimilarity, but of con-
trasimilarity:

Definition 6.9 (Contrasimilarity). A contrasimulation is a relation R where,
for all (𝑝, 𝑞) ∈ R with 𝑤⃗ ∈ Act and 𝑝 𝑤⃗−→→ 𝑝′, there is a 𝑞′ with 𝑞 𝑤⃗−→→ 𝑞′ and
(𝑞′, 𝑝′) ∈ R.106 The contrasimulation preorder ⪯C and contrasimilarity ∼C are
defined as in Definition 6.3.

Contrasimilarity allows local asymmetry in matching internal transitions. A
witness relation for Example 6.4 would also include (pa, pab) and (pb, pab).
The intuition is that contrasimulation preorder allows states to slightly get
ahead of their counterparts—pa is more committed than pab—as long as the
latter can catch up silently.

Contrasimilarity and stable bisimilarity, both are at the weak end of ab-
stractions of bisimilarity, “weakest” bisimilarities, one could say. We discuss
them and their characterizations in great detail in Bisping &Montanari (2024).

Contrasimilarity and stable bisimilarity are nice for proofs as they have
coinductive characterizations. They also are more well-behaved than Bell’s
“eventual bisimilarity,” which fails to be an equivalence if the transition sys-
tem has divergent states (cf. Bell, 2014, Section 3.3).

As we will establish in Section 7.2.1, contrasimilarity and stable bisimilar-
ity indeed are the finest equivalences from the standard spectrum to equate
the sequential and the parallel program.
Remark 6.3 (Half a definition of stable bisimilarity). Sangiorgi (2012, Section
6.5) gives the following, simpler definition for stable bisimulation:107

A process relationR is a stable bisimulation if, whenever (𝑝, 𝑞) ∈
R, for all 𝑤⃗ we have:

• for all 𝑝′ with 𝑝 𝑤⃗−→→ 𝑝′ and 𝑝′ is stable, there is 𝑞′ such that
𝑞 𝑤⃗−→→ 𝑞′ and (𝑝′, 𝑞′) ∈ R,

and the converse on the actions from 𝑞.

Sangiorgi notes that the induced stable bisimilarity relationwould not be tran-
sitive on transition systems with divergences. But the situation is even more
severe!

A

Div

B

a b

𝜏

Defined like this, stable bisimilarity would not even imply weak trace
equivalence. Consider the processes A and B in the margin. As all their
non-empty word transitions end in instable states, the variant from Sangiorgi
(2012) ignores their differences altogether.

“Our” stable bisimilarity of Definition 6.8, however, does not suffer from
this defect, for it demands matching of all word transitions. Our relational
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Definition 6.8 is informed by the upcoming modal characterizations of Sec-
tion 6.3 (and of van Glabbeek (1993) and Bisping & Montanari (2024)). As
discussed in Section 2.3.3, it is trivial to ensure that modally characterized re-
lations are transitive and refine trace preorder. Such are the perks of modal
characterizations!

6.2.2 Abstraction as Congruence—and Stable Failures

For trace-like equivalences, there commonly appear two kinds of abstractions
in the literature: Ones where negation and conjunctive observations are only
possible when processes have stabilized, that is, exhausted their possibilities
of internal behavior, and ones where stability plays no role. We will illus-
trate these options using modal characterizations of stable and weak failure
equivalence, abstracting Definition 3.2:

Definition 6.10 (Weak failure preorder and equivalence). Letweak failure pre-
order and equivalence be defined by the weak failure observations OWF pro-
duced by 𝜑WF in the following grammar, and stable failure preorder and equiv-
alence, by the products of 𝜑SF.

𝜑WF ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WF ∣ ⟨𝜀⟩ ⋀𝑖∈𝐼 ¬⟨𝜀⟩⟨𝑎𝑖⟩⊤

𝜑SF ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑SF ∣ ⊤ ∣ ⟨𝜀⟩ ⋀𝑖∈𝐼 ¬⟨𝛼𝑖⟩⊤ where 0 ∈ 𝐼 ∧ 𝛼0 = 𝜏

Weak failures are obtained by intermitting ⟨𝜀⟩-observations in between the
steps. In comparison to the strong modal characterization of Definition 3.3,
this just means prepending productions (and negated actions) by ⟨𝜀⟩.

Stable failures demand a ¬⟨𝜏⟩-conjunct in the conjunctions of refused ac-
tions. In one respect, this increases expressivity, as the possibility to stabilize
into a state where 𝑝 𝜏↛ becomes observable. In another respect, one loses
the option to see failures in instable parts of the transition system. In partic-
ular, if all states of a transition system are divergent, stable failure preorder
degenerates to weak trace preorder.

Often, weak and stable failures will coincide. For instance, philosopher
process P is distinguished from Q by weak failure ⟨𝜀⟩ ⋀{¬⟨𝜀⟩⟨a⟩} and by
stable failure ⟨𝜀⟩ ⋀{¬⟨𝜏⟩, ¬⟨a⟩} alike. For the other direction, Q is preordered
to P with respect to both, weak and stable failures.

But in general, weak and stable failure equivalence are incomparable. The
following example to highlight their differences is due to van Glabbeek:

Example 6.5 (Congruence on 𝜏 -abstraction). Figure 6.4 presents transition
systems of four processes, given through their initial states: P𝑒 makes a non-
deterministic choice op between a and b, performing arbitrarily many idle-
actions in between. Pℓ does the same but can change the choice while idling.
P𝜏

𝑒 and P𝜏
ℓ are variants of the two obtained by renaming idle into 𝜏 -actions.

Many process algebras have an operator to perform such an abstraction of a
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Figure 6.4: A pair of processes P𝑒 and Pℓ together with versions P𝜏
𝑒 and P𝜏

ℓ of
the two where idle has been abstracted into internal 𝜏 -behavior.

process, for instance, hide in mCRL2 (Groote & Mousavi, 2014) or hiding “∖”
in CSP (Hoare, 1985).

P𝑒 and Pℓ allow the same weak failure and stable failure observations and
are thus equivalent. For the abstracted variants, P𝜏

𝑒 is distinguished from P𝜏
ℓ

by the weak failure ⟨𝜀⟩⟨op⟩⟨𝜀⟩ ⋀{¬⟨𝜀⟩⟨b⟩}, as b becomes weakly impossible
at A𝜏

𝑒 but not at A𝜏
ℓ . Due to the 𝜏−→-loops, this difference is not expressible as

a stable failure. Consequently, P𝜏
𝑒 and P𝜏

ℓ are stable-failure-equivalent.

The example highlights one way in which weak failures might be stronger
than stable failures. For most process algebras, weak failures are too strong in
the following sense: Weak failures cannot be a congruence for hiding opera-
tors, as witnessed by Example 6.5!

Therefore, the standardmodels of CSP following Brookes et al. (1984) have
used stable failures for their semantics. Van Glabbeek (1993) only includes
variants of stable failures in his weak spectrum, disregarding weak failures.
Other authors such as Gazda et al. (2020) work with weak failures. Therefore,
our spectrum in Section 6.3 will treat both. Weak failures will be located in the
part below weak bisimilarity; stable failures in that below stable bisimilarity.
Remark 6.4 (More on congruences). In general, congruence properties are
harder to obtain in the weak spectrum. A classic example would be weak
bisimilarity, not forming a congruence with respect to the choice operator +,
because a ∼OWB

𝜏 .a, but a + b ≁WB 𝜏 .a + b. We will not go into the par-
ticularities around this and point to Sangiorgi (2012, Section 4.4) for how to
obtain a congruence through rooted weak bisimilarity.

6.3 Expressing the Weak Spectrum by Quantities

We can capture the weak spectrum in a lattice of vectors like the strong one
in Chapter 3. But we need a few more dimensions.

6.3.1 Syntactic Expressiveness

We adapt the notions of Section 3.2.2 for the weak spectrum to distinguish the
new kinds of conjunctions that appear in HMLSRBB of Definition 6.5:
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108 To simplify matters, we drop the distinction
of two kinds of positive conjunct depths of Sec-
tion 3.2.2. Section 7.3.2 will hint how to add sta-
ble revivals back in.

109 fun Expressiveness_Price
.expressiveness_price

1. Modal depth of observations (⟨𝑎⟩, (𝛼)).
2. New: Nesting depth of branching conjunctions (with one (𝛼)-

observation conjunct, not starting with ⟨𝜀⟩).
3. New: Nesting depth of unstable conjunctions (that do not enforce sta-

bility by a ¬⟨𝜏⟩⊤-conjunct).
4. New: Nesting depth of stable conjunctions (that do enforce stability by

a ¬⟨𝜏⟩⊤-conjunct).
5. Nesting depth of immediate conjunctions (that are not preceded by ⟨𝜀⟩).
6. Maximal modal depth of positive conjuncts in conjunctions.108
7. Maximal modal depth of negative conjuncts in conjunctions.
8. Nesting depth of negations.

To formalize our weak spectrum, we need to fix the observation languages
Oweak

𝑁 . This time, we will do this by directly providing an expressiveness pric-
ing metric.

Definition 6.11 (Weak notions). We define the weak notions of observability
using vectors of extended naturals

Nweak ≔ ℕ8
∞,

ordered by pointwise comparison of vector components.
We capture the family of weak observation languages Oweak

𝑁∈Nweak by pro-
viding an expressiveness price function exprweak ∶ HMLSRBB → Nweak with
Oweak

𝑁 = {𝜑 ∣ exprweak(𝜑) ≤ 𝑁}.109 It is defined in mutual recursion with
expr𝜀 and expr∧ as follows—if multiple rules apply, pick the first one:

exprweak (⊤) ≔ expr𝜀 (⊤) ≔ 0
exprweak (⟨𝜀⟩𝜒) ≔ expr𝜀 (𝜒)
exprweak (⋀ Ψ) ≔ ê5 + expr𝜀 (⋀ Ψ)

expr𝜀 (⟨𝑎⟩𝜑) ≔ ê1 + exprweak (𝜑)

expr𝜀 (⋀ Ψ) ≔ sup {expr∧ (𝜓) ∣ 𝜓 ∈ Ψ} +
⎧{
⎨{⎩

ê4 if ¬⟨𝜏⟩⊤ ∈ Ψ
ê2 + ê3 if there is (𝛼)𝜑 ∈ Ψ
ê3 otherwise

expr∧ (¬⟨𝜏⟩⊤) ≔ (0, 0, 0, 0, 0, 0, 0, 1)
expr∧ (¬𝜑) ≔ sup {ê8 + exprweak (𝜑) , (0, 0, 0, 0, 0, 0, (exprweak (𝜑))1 , 0)}

expr∧ ((𝛼)𝜑) ≔ sup {ê1 + exprweak (𝜑) , (0, 0, 0, 0, 0, 1 + (exprweak (𝜑))1 , 0, 0)}
expr∧ (𝜑) ≔ sup { exprweak (𝜑) , (0, 0, 0, 0, 0, (exprweak (𝜑))1 , 0, 0)}

6.3.2 Weak Spectrum

Using Definition 6.11, we can give coordinates to the common notions of weak
behavioral equivalence in Figure 6.5. In this subsection, we take a deeper look
into the observation languages characterized by the coordinates and argue for
the correctness of exemplary cases.

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Expressiveness_Price.html#Expressiveness_Price.expressiveness_price%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Expressiveness_Price.html#Expressiveness_Price.expressiveness_price%7Cconst
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stability-respecting branching bisim BBsr

∞, ∞, ∞, ∞, ∞, ∞, ∞, ∞

branching bisim BB
∞, ∞, ∞, 0, ∞, ∞, ∞, ∞

𝜂-bisim 𝜂B
∞, ∞, ∞, 0, 0, ∞, ∞, ∞

delay bisim DB
∞, 0, ∞, 0, ∞, ∞, ∞, ∞

weak bisim WB
∞, 0, ∞, 0, 0, ∞, ∞, ∞

2-nested weak sim 2WS
∞, 0, ∞, 0, 0, ∞, ∞, 1

contrasim C
∞, 0, ∞, 0, 0, 0, ∞, ∞

weak
ready sim WRS

∞, 0, ∞, 0, 0, ∞, 1, 1

weak
readiness WR

∞, 0, 1, 0, 0, 1, 1, 1

weak
possible future WPF
∞, 0, 1, 0, 0, ∞, ∞, 1

weak
impossible future WIF

∞, 0, 1, 0, 0, 0, ∞, 1
weak sim 1WS

∞, 0, ∞, 0, 0, ∞, 0, 0

𝜂-sim 𝜂S
∞, ∞, ∞, 0, 0, ∞, 0, 0

weak failure WF
∞, 0, 1, 0, 0, 0, 1, 1

weak trace WT
∞, 0, 0, 0, 0, 0, 0, 0

weak enabledness WE
1, 0, 0, 0, 0, 0, 0, 0

weak universal WU
0, 0, 0, 0, 0, 0, 0, 0

s.-r. delay bisim DBsr

∞, 0, ∞, ∞, ∞, ∞, ∞, ∞

stable bisim SB
∞, 0, 0, ∞, 0, ∞, ∞, ∞

stable
ready sim WRSs

∞, 0, 0, ∞, 0, ∞, 1, 1

stable readiness WRs

∞, 0, 0, 1, 0, 1, 1, 1

stable
imposs. fut. WIFs
∞, 0, 0, 1, 0, 0, ∞, 1

stable failures WFs
∞, 0, 0, 1, 0, 0, 1, 1

stable sim SS
∞, 0, 0, ∞, 0, ∞, 0, 1

Figure 6.5: Hierarchy of weak behavioral equivalences/preorders, by equivalence notion coordinates.
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110 lemma Weak_Traces.LTS_Tau.trace
_equals_trace_to_formula

111 theorem Eta_Bisimilarity.LTS_Tau.eta
_bisim_coordinate
112 theorem Branching_Bisimilarity.LTS
_Tau.sr_branching_bisim_coordinate

Linear-time notions. Let us first see how trace-like notions are handled in
our spectrum.

Lemma 6.1 (Characterization of weak trace equivalence). The subsetOweak
WT =

Oweak
(∞,0,0,0,0,0,0,0) ⊆ HMLSRBB can be given by the following grammar:

𝜑WT ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WT ∣ ⟨𝜀⟩⊤ ∣ ⊤ with 𝑎 ∈ Act .

There is a formula 𝜑 ∈ Oweak
WT distinguishing 𝑝 from 𝑞 precisely if 𝑝 is notweakly

trace-preordered to 𝑞.110

Proof. For aword 𝑤⃗ = 𝑎1 … 𝑎𝑛 ∈ Act∗ , the formula ⟨𝜀⟩⟨𝑎1⟩ … ⟨𝜀⟩⟨𝑎𝑛⟩⟨𝜀⟩⊤ ∈
Oweak

WT is true for a state 𝑝 precisely if there is a 𝑝′ such that 𝑝 𝑤⃗−→→ 𝑝′, that
is, if 𝑤⃗ ∈ WeakTraces(𝑝). As WeakTraces(𝑝) = WeakTraces(𝑞) for states
𝑝 and 𝑞 precisely if WeakTraces(𝑝) ∩ Act∗ = WeakTraces(𝑞) ∩ Act∗ , this
completes the proof.

Thewhole list of logics for weak linear-time notions can be found in Figure 6.6.
The interesting points are highlighted in blue. Productions that could be left
out without affecting distinctiveness are set in gray.

The modal characterizations correspond to the ones one would expect,
with some trivial ones appearing due to the language hierarchy approach.

Bisimulation-like notions. For the abstractions of bisimilarity in Figure 6.7,
some more interesting things happen.

Bisping & Jansen (2025, Section 3.3) prove in detail, for each of our ab-
stractions of bisimilarity, that it corresponds to its respective relational char-
acterization. The Isabelle theory (Barthel et al., 2025) features theorems for
𝜂-bisimilarity111 and for stability-respecting branching bisimilarity112.

The first interesting feature of the weak hierarchy is an effect of some
languages not enforcing top-level negation as observed in Bisping & Jansen
(2024, Ex. 2.5).
Example 6.6 (Weak bisimulation logic). Let us contrast the logic of weak
bisimulation observations OWB defined through (∞, 0, ∞, 0, 0, ∞, ∞, ∞) to
the weak bisimulation observations OWB′ from Gazda et al. (2020):

𝜑WB′ ∶∶= ⟨𝜀⟩𝜑WB′ ∣ ⟨𝜀⟩⟨𝑎⟩⟨𝜀⟩𝜑WB′ ∣ ⋀{𝜑WB′ , 𝜑WB′ , …} ∣ ¬𝜑WB′

Our OWB allows a few formulas that OWB′ lacks, e.g. ⟨𝜀⟩⟨a⟩⟨𝜀⟩⟨a⟩⟨𝜀⟩⊤.
This does not add expressiveness as OWB′ has ⟨𝜀⟩⟨a⟩⟨𝜀⟩⟨𝜀⟩⟨a⟩⟨𝜀⟩⊤ andJ⟨𝜀⟩⟨𝜀⟩𝜑K = J⟨𝜀⟩𝜑K.

For the other direction, there is a bigger difference due to OWB′ allowing
more freedom in the placement of conjunction and negation. In particular, it
permits top-level conjunctions and negated conjunctions without ⟨𝜀⟩ in be-
tween. But these features do not add distinctive power. OWB′ also allows
top-level negation, and this adds distinctive power to the preorders, effec-
tively turning them into equivalence relations. We do not enforce this and

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Weak_Traces.html#Weak_Traces.LTS_Tau.trace_equals_trace_to_formula%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Weak_Traces.html#Weak_Traces.LTS_Tau.trace_equals_trace_to_formula%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Eta_Bisimilarity.html#Eta_Bisimilarity.LTS_Tau.eta_bisim_coordinate%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Eta_Bisimilarity.html#Eta_Bisimilarity.LTS_Tau.eta_bisim_coordinate%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Branching_Bisimilarity.html#Branching_Bisimilarity.LTS_Tau.sr_branching_bisim_coordinate%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Branching_Bisimilarity.html#Branching_Bisimilarity.LTS_Tau.sr_branching_bisim_coordinate%7Cfact
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Weak universal, WU at (0, 0, 0, 0, 0, 0, 0, 0):

𝜑WU ∶∶= ⊤ ∣ ⟨𝜀⟩⊤

Weak enabledness, WE at (1, 0, 0, 0, 0, 0, 0, 0):

𝜑WE ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WU ∣ 𝜑WU

Weak traces, WT at (∞, 0, 0, 0, 0, 0, 0, 0):

𝜑WT ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WT ∣ 𝜑WU

Weak failures, WF at (∞, 0, 1, 0, 0, 0, 1, 1):

𝜑WF ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WF ∣ ⟨𝜀⟩ ⋀{𝜓WF, 𝜓WF, …} ∣ 𝜑WU

𝜓WF ∶∶= ¬⟨𝜀⟩⟨𝑎⟩𝜑WU ∣ ¬⟨𝜀⟩⊤ ∣ ⟨𝜀⟩⊤

Stable failures, WFs at (∞, 0, 0, 1, 0, 0, 1, 1):

𝜑WFs ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WFs ∣ ⟨𝜀⟩ ⋀{¬⟨𝜏⟩⊤, 𝜓WF, 𝜓WF, …} ∣ 𝜑WU

Weak readiness, WR at (∞, 0, 1, 0, 0, 1, 1, 1):

𝜑WR ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WR ∣ ⟨𝜀⟩ ⋀{𝜓WR, 𝜓WR, …} ∣ 𝜑WU

𝜓WR ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WU ∣ 𝜓WF

Stable readiness, WRs at (∞, 0, 0, 1, 0, 1, 1, 1):

𝜑WRs ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WRs ∣ ⟨𝜀⟩ ⋀{¬⟨𝜏⟩⊤, 𝜓WR, 𝜓WR, …} ∣ 𝜑WU

Weak impossible futures, WIF at (∞, 0, 1, 0, 0, 0, ∞, 1):

𝜑WIF ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WIF ∣ ⟨𝜀⟩ ⋀{𝜓WIF, 𝜓WIF, …} ∣ 𝜑WU

𝜓WIF ∶∶= ¬⟨𝜀⟩⟨𝑎⟩𝜑WT ∣ ¬⟨𝜀⟩⊤ ∣ ⟨𝜀⟩⊤

Stable impossible futures, WIFs at (∞, 0, 0, 1, 0, 0, ∞, 1):

𝜑WIFs ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WIFs ∣ ⟨𝜀⟩ ⋀{¬⟨𝜏⟩⊤, 𝜓WIF, 𝜓WIF, …} ∣ 𝜑WU

Weak possible futures, WPF at (∞, 0, 1, 0, 0, ∞, ∞, 1):

𝜑WPF ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WPF ∣ ⟨𝜀⟩ ⋀{𝜓WPF, 𝜓WPF, …} ∣ 𝜑WU

𝜓WPF ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WT ∣ 𝜓WIF

Figure 6.6: Grammars induced by coordinates for weak linear-time notions of
equivalence.



6.3. Expressing the Weak Spectrum by Quantities 123

Contrasimulation, C at (∞, 0, ∞, 0, 0, 0, ∞, ∞):

𝜑C ∶∶= ⟨𝜀⟩𝜒C ∣ 𝜑WU

𝜒C ∶∶= ⟨𝑎⟩𝜑C ∣ ⋀{𝜓C, 𝜓C, …}
𝜓C ∶∶= ¬⟨𝜀⟩𝜒C ∣ ⟨𝜀⟩𝜒WUx

𝜒WUx ∶∶= ⋀{⟨𝜀⟩𝜒WUx , ¬⟨𝜀⟩𝜒WUx , …}

Weak bisimulation, WB at (∞, 0, ∞, 0, 0, ∞, ∞, ∞):

𝜑WB ∶∶= ⟨𝜀⟩𝜒WB ∣ 𝜑WU

𝜒WB ∶∶= ⟨𝑎⟩𝜑WB ∣ ⋀{𝜓WB, 𝜓WB, …}
𝜓WB ∶∶= ¬⟨𝜀⟩𝜒WB ∣ ⟨𝜀⟩𝜒WB

Delay bisimulation, DB at (∞, 0, ∞, 0, ∞, ∞, ∞, ∞):

𝜑DB ∶∶= ⟨𝜀⟩𝜒DB ∣ ⋀{𝜓DB, 𝜓DB, …}
𝜒DB ∶∶= ⟨𝑎⟩𝜑DB ∣ ⋀{𝜓DB, 𝜓DB, …}
𝜓DB ∶∶= ¬⟨𝜀⟩𝜒DB ∣ ⟨𝜀⟩𝜒DB

𝜂-bisimulation, 𝜂B at (∞, ∞, ∞, 0, 0, ∞, ∞, ∞):

𝜑𝜂B ∶∶= ⟨𝜀⟩𝜒𝜂B ∣ 𝜑WU

𝜒𝜂B ∶∶= ⟨𝑎⟩𝜑𝜂B ∣ ⋀{𝜓𝜂B, 𝜓𝜂B, …} ∣ ⋀{(𝛼)𝜑𝜂B, 𝜓𝜂B, 𝜓𝜂B, …}
𝜓𝜂B ∶∶= ¬⟨𝜀⟩𝜒𝜂B ∣ ⟨𝜀⟩𝜒𝜂B

Branching bisimulation, BB at (∞, ∞, ∞, 0, ∞, ∞, ∞, ∞):

𝜑BB ∶∶= ⟨𝜀⟩𝜒BB ∣ ⋀{𝜓BB, 𝜓BB, …}
𝜒BB ∶∶= ⟨𝑎⟩𝜑BB ∣ ⋀{𝜓BB, 𝜓BB, …} ∣ ⋀{(𝛼)𝜑BB, 𝜓BB, 𝜓BB, …}
𝜓BB ∶∶= ¬⟨𝜀⟩𝜒BB ∣ ⟨𝜀⟩𝜒BB

Stable bisimulation, SB at (∞, 0, 0, ∞, 0, 0, ∞, ∞):

𝜑SB ∶∶= ⟨𝜀⟩𝜒SB ∣ 𝜑WU

𝜒SB ∶∶= ⟨𝑎⟩𝜑SB ∣ ⋀{¬⟨𝜏⟩⊤, 𝜓SB, 𝜓SB, …}
𝜓SB ∶∶= ¬⟨𝜀⟩𝜒SB ∣ ⟨𝜀⟩𝜒SB

Stability-respecting delay bisimulation, DBsr at (∞, 0, ∞, ∞, ∞, ∞, ∞, ∞):

𝜑DBsr ∶∶= ⟨𝜀⟩𝜒DBsr ∣ ⋀{𝜓DBsr , 𝜓DBsr , …}
𝜒DBsr ∶∶= ⟨𝑎⟩𝜑DBsr ∣ ⋀{𝜓DBsr , 𝜓DBsr , …} ∣ ⋀{¬⟨𝜏⟩⊤, 𝜓DBsr , 𝜓DBsr , …}
𝜓DBsr ∶∶= ¬⟨𝜀⟩𝜒DBsr ∣ ⟨𝜀⟩𝜒DBsr

Stability-respecting branching bisim., BBsr at (∞, ∞, ∞, ∞, ∞, ∞, ∞, ∞):

𝜑BBsr ∶∶= ⟨𝜀⟩𝜒BBsr ∣ ⋀{𝜓BBsr , 𝜓BBsr , …}
𝜒BBsr ∶∶= ⟨𝑎⟩𝜑BBsr ∣ ⋀{𝜓BBsr , 𝜓BBsr , …} ∣ ⋀{(𝛼)𝜑BBsr , 𝜓BBsr , 𝜓BBsr , …}

∣ ⋀{¬⟨𝜏⟩⊤, 𝜓BBsr , 𝜓BBsr , …}
𝜓BBsr ∶∶= ¬⟨𝜀⟩𝜒BBsr ∣ ⟨𝜀⟩𝜒BBsr

Figure 6.7: Grammars induced by coordinates for weak bisimulation-like no-
tions of equivalence.
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113 theorem HML_SRBB.LTS_Tau.srbb
_stable_Neg_normalizable_set

114 This is also the topic of Bisping &Montanari
(2024, Section 7.3)

115 theorem Eta_Bisimilarity.LTS_Tau.eta
_sim_coordinate

thus our ⪯OWB
≠ ∼OWB

; for instance, 𝜏 .a ⪯OWB
𝜏 + 𝜏 .a, but 𝜏 + 𝜏 .a ⪯̸OWB

𝜏 .a
due to ⟨𝜀⟩ ⋀{¬⟨𝜀⟩⟨a⟩⊤}. However, as a distinction by ¬𝜑 in one direction
implies one by 𝜑 in the other, we know that this difference is ironed out once
we consider the equivalence ∼OWB

.

Another point of interest is the relationship of weak bisimilarity, contrasim-
ilarity and stable bisimilarity. Remark 3.3 on synonymous coordinates
has mentioned that (∞, ∞, 0, 0, ∞, ∞) ∈ Nstrong, which disallows pos-
itive conjuncts, already characterizes strong bisimilarity. Translating
this coordinate to the weak spectrum, we hit (∞, 0, ∞, 0, 0, 0, ∞, ∞) or
(∞, 0, 0, ∞, 0, 0, ∞, ∞) ∈ Nweak. In the weak spectrum, these coordinates
correspond to differing notions! The first of the two is exactly the coordinate
of contrasimilarity. The other one describes observations that are equally
expressive to stable bisimulation observations, because stabilized positive
conjuncts can be normalized away by 113

J⟨𝜀⟩ ⋀{¬⟨𝜏⟩, 𝜑1, ¬𝜑2, …}K = J⟨𝜀⟩ ⋀{¬⟨𝜏⟩, ¬⟨𝜀⟩ ⋀{¬⟨𝜏⟩, ¬𝜑1}, ¬𝜑2, …}K.
In this sense, contrasimulation and stable bisimilarity are sibling notions in
the same manner as weak failures and stable failures of Section 6.2.2.114 We
use the higher coordinate (∞, 0, 0, ∞, 0, ∞, ∞, ∞) with positive conjuncts
for stable bisimulation in Figure 6.5 to underscore that stable bisimulation
preorder is finer than stable simulation preorder and its variants.

Simulation-like notions. Figure 6.8 adds the simulation-like notions for com-
pleteness. At this point, they are not particularly interesting.

Bisping & Jansen (2025) contains proofs that the observation languages for
weak simulation and 𝜂-simulation correspond to their relational definitions
(Definition 6.3).115
Remark 6.5 (Spurious conjuncts and minimality). Several of our weak gram-
mars allow bogus trivial conjuncts. The most severe case might be the trees of
ultimately empty conjunctions of 𝜒WUx for contrasimulation in Figure 6.7. A
natural impulse might be to somehow change the grammar to optimize these
parts away, ensuring a nicer output of distinguishing formulas in the spec-
troscopy.

But this optimization would be premature in our context! Spectroscopy
strategy formulas will never contain trivial conjuncts, by design, because
those can not be distinguishing. Even more, the minimal winning budgets in
the spectroscopy game will only ever lead to witness formulas that are min-
imal with respect to syntactic expressiveness prices. Therefore, optimizing
away superfluous conjuncts in the grammars would itself be superfluous.

On the other hand, shrinking the languages would call for additional con-
texts, that is, non-terminals in the grammar. But more non-terminals mean
additional kinds of spectroscopy game positions and moves, thus making the
spectroscopy game more complex—for nothing.

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/HML_SRBB.html#HML_SRBB.LTS_Tau.srbb_stable_Neg_normalizable_set%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/HML_SRBB.html#HML_SRBB.LTS_Tau.srbb_stable_Neg_normalizable_set%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Eta_Bisimilarity.html#Eta_Bisimilarity.LTS_Tau.eta_sim_coordinate%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Eta_Bisimilarity.html#Eta_Bisimilarity.LTS_Tau.eta_sim_coordinate%7Cfact
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Weak simulation, 1WS at (∞, 0, ∞, 0, 0, ∞, 0, 0):

𝜑1WS ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑1WS ∣ ⟨𝜀⟩ ⋀{𝜓1WS, 𝜓1WS, …} ∣ 𝜑WU

𝜓1WS ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑1WS ∣ ⟨𝜀⟩ ⋀{𝜓1WS, 𝜓1WS, …}

Weak ready simulation, WRS at (∞, 0, ∞, 0, 0, ∞, 1, 1):

𝜑WRS ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WRS ∣ ⟨𝜀⟩ ⋀{𝜓WRS, 𝜓WRS, …} ∣ 𝜑WU

𝜓WRS ∶∶= ¬⟨𝜀⟩⟨𝑎⟩𝜑WU∗ ∣ ⟨𝜀⟩⟨𝑎⟩𝜑WRS ∣ ⟨𝜀⟩ ⋀{𝜓WRS, 𝜓WRS, …} ∣ ¬⟨𝜀⟩𝜑WU∗

𝜑WU∗ ∶∶= ⊤ ∣ ⟨𝜀⟩ ⋀{𝜑WU∗ , 𝜑WU∗ , …}

2-nested weak simulation, 2WS at (∞, 0, ∞, 0, 0, ∞, ∞, 1):

𝜑2WS ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑2WS ∣ ⟨𝜀⟩ ⋀{𝜓2WS, 𝜓2WS, …} ∣ 𝜑WU

𝜓2WS ∶∶= ¬𝜓1WS ∣ ⟨𝜀⟩⟨𝑎⟩𝜑2WS ∣ ⟨𝜀⟩ ⋀{𝜓2WS, 𝜓2WS, …}

𝜂-simulation, 𝜂S at (∞, ∞, ∞, 0, 0, ∞, 0, 0):

𝜑𝜂S ∶∶= 𝜓𝜂S ∣ 𝜑WU

𝜓𝜂S ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑𝜂S ∣ ⟨𝜀⟩ ⋀{(𝛼)𝜑𝜂S, 𝜓𝜂S, 𝜓𝜂S, …} ∣ ⟨𝜀⟩ ⋀{𝜓𝜂S, 𝜓𝜂S, …}

Stable simulation, SS at (∞, 0, 0, ∞, 0, ∞, 0, 1):

𝜑SS ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑SS ∣ ⟨𝜀⟩ ⋀{¬⟨𝜏⟩⊤, 𝜓SS, 𝜓SS, …} ∣ 𝜑WU

𝜓SS ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑SS ∣ ⟨𝜀⟩ ⋀{¬⟨𝜏⟩⊤, 𝜓SS, 𝜓SS, …} ∣ ¬𝜑WU

Stable ready simulation, WRSs at (∞, 0, 0, ∞, 0, ∞, 1, 1):

𝜑WRSs ∶∶= ⟨𝜀⟩⟨𝑎⟩𝜑WRSs ∣ ⟨𝜀⟩ ⋀{¬⟨𝜏⟩⊤, 𝜓WRSs , 𝜓WRSs , …} ∣ 𝜑WU

𝜓WRSs ∶∶= ¬⟨𝜀⟩⟨𝑎⟩𝜑WU ∣ ⟨𝜀⟩⟨𝑎⟩𝜑WRSs ∣ ⟨𝜀⟩ ⋀{¬⟨𝜏⟩⊤, 𝜓WRSs , 𝜓WRSs , …}

Figure 6.8: Grammars induced by coordinates for weak simulation-like no-
tions of equivalence.
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116 Especially for coupled similarity, this gap is
ironic, as my research into game characteriza-
tions of equivalences has been kicked off by an
interest in decision procedures for coupled sim-
ilarity in Bisping & Nestmann (2019) and Bisp-
ing et al. (2020). But it would just not have been
economic to add awhole new dimension for this
single darling of mine.

6.4 Discussion

With this chapter, we have explored the space of weak behavioral equiva-
lences in concurrency theory, focusing on their modal characterizations and
relationships within the weak spectrum, following van Glabbeek (1993). This
adds the preliminaries to consider their decision procedures in Chapter 7.

The power of weakness. In examples, we have seen how weak equivalences
handle internal nondeterminism due to communication in different ways.
Practical scenarios, such as parallelizing compilers and process abstraction
of Section 6.2, reveal the possibilities and limitations of the different design
decisions behind process equivalences.

Following Idea 10, our modal logic characterization through HMLSRBB
captures a rich weak spectrum between stability-respecting branching bisim-
ilarity and weak trace equivalence. This adds to the rich body of work on
modal characterizations of branching bisimilarity by De Nicola & Vaandrager
(1995), Fokkink et al. (2019), Geuvers (2022), and Geuvers & Golov (2023).

Our spectrum, however, leaves out some classical notions such as stable
failure traces and coupled simulation, which would have called for even more
dimensions in the already 8-dimensional pricing metric.116 We will return to
the topic of how such notions could be included in Section 7.3.2 and 7.3.3.

What's next? Logic and pricing metric are designed in such a way that
readers of preceding chapters might already be able to guess how they
will translate to game moves for stable and branching conjunctions in the
next chapter. Call this avenue for gamification yet another perk of modal
characterizations—besides the benefits of built-in transitivity and consistency
that we have noticed along the way of this chapter!



7 Spectroscopy for the
Weak Spectrum

Related publications. This chapter is based on
“One energy game for the spectrum between
branching bisimilarity and weak trace
semantics.” (Bisping & Jansen, 2024), its
extended draft version (Bisping & Jansen,
2025) and its Isabelle/HOL formalization
(Barthel et al., 2025). These publications make
the contribution of characterizing the weak
spectrum through a weak spectroscopy game.
The present thesis is more detailed with
respect to complexity and to handling of stable
failure traces and related notions.

By applying the ideas we have explored so far, we can derive a game for the
weak spectrum of Chapter 6. The key new idea here is how to encode internal
activity “⟨𝜀⟩ …” in game moves:

Idea 11: Weakening the attacker

In the game, the places where ⟨𝜀⟩ appears in HMLSRBB-formulas mean
that the attacker must allow the maximization of defender’s 𝑄-options
with respect to internal 𝜏−→-steps.

The basic schematics of how the weak game solves the spectroscopy problem
are exactly the same as for the strong spectroscopy in Figure 5.1.

What is different this time around is that we have a full Isabelle/HOL for-
malization of game correctness in Section 7.1, and that we can apply the al-
gorithm to real case studies that involve internal behavior in Section 7.2. In
Section 7.3, we discuss how to use our method to check evenmore weak equiv-
alences.

7.1 The Weak Spectroscopy Game

On the next pages, we upgrade the spectroscopy game of Section 5.1 to account
for the weak spectrum of Chapter 6.

7.1.1 The Game

The weak spectroscopy game, in many respects, is just like the spectroscopy
games we have already discussed: The attacker, trying to distinguish states,
has different paths that move closely along the productions of the HMLSRBB-
grammar (Definition 6.5). But this time, there are four different kinds of non-
empty conjunctions! This makes the following schematic depiction in Fig-
ure 7.1 already look quite entangled.

Formally, the game rules are defined as follows:

Definition 7.1 (Weak spectroscopy game). For a system S = (P,Act, −→), the
8-dimensional weak spectroscopy game GS

∇ = (𝐺, 𝐺d, , 𝑤) consists of

• attacker (immediate) positions [𝑝, 𝑄]a ∈ 𝐺a,
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[𝑝, 𝑄]a [𝑝, 𝑄𝜀]𝜀
a

(𝑝, 𝑄)d

(𝑝, {𝑞 ∈𝑄𝜀 ∣ 𝑞 𝜏↛})𝑠
d

(𝑝, 𝛼, 𝑝′, 𝑄𝜀 ∖ 𝑄𝛼, 𝑄𝛼)𝜂
d

[𝑝′, 𝑄′]𝜂
a

[𝑝, 𝑞]∧
a [𝑞, {𝑝′ ∣ 𝑝 ↠ 𝑝′}]𝜀

a

[𝑝, {𝑞′ ∣ 𝑞 ↠ 𝑞′}]𝜀
a

[𝑝′, 𝑄′]a

𝑄 ↠ 𝑄𝜀
0

𝑄 = ∅
0

𝑄 ≠ ∅
−ê5

𝑝 𝜏−→ … 0

𝑝 𝑎−→ 𝑝′

𝑄𝜀
𝑎−→ 𝑄′

−ê1

𝑄 = 𝑄𝜀0
𝑝 𝜏↛

0

𝑝 (𝛼)−−→ 𝑝′

𝑄𝛼 ⊆ 𝑄𝜀
0

𝑞 ∈ 𝑄
−ê3

𝑞 ∈ 𝑄𝜀
𝑞 𝜏↛−ê4

∅ = 𝑄 =
{𝑞 ∈𝑄𝜀 ∣ 𝑞 𝜏↛}

−ê4 − ê8
min{1,6}, 0, 0, 0, 0, 0, 0, 0

𝑝 ≠ 𝑞
min{1,7}, 0, 0, 0, 0, 0, 0, −1

𝑄𝛼
(𝛼)−−→ 𝑄′ min{1,6}, −1, −1, 0, 0, 0, 0, 0

−ê1

𝑞 ∈ 𝑄𝜀 ∖ 𝑄𝛼−ê2 − ê3

Figure 7.1: Schematic weak spectroscopy game of Definition 7.1.

117 inductive Spectroscopy_Game.LTS_Tau
.spectroscopy_moves

• new: attacker delayed positions [𝑝, 𝑄]𝜀
a ∈ 𝐺a,

• attacker conjunct positions [𝑝, 𝑞]∧
a ∈ 𝐺a,

• new: attacker branching positions [𝑝, 𝑄]𝜂
a ∈ 𝐺d,

• defender conjunction positions (𝑝, 𝑄)d ∈ 𝐺d,
• new: defender stable conjunction positions (𝑝, 𝑄)𝑠

d ∈ 𝐺d,
• new: defender branching positions (𝑝, 𝛼, 𝑝′, 𝑄, 𝑄𝛼)𝜂

d ∈ 𝐺d,

where 𝑝, 𝑞 ∈ P and 𝑄, 𝑄𝛼 ∈ 2P , and the following sixteen kinds of moves.117
Moves to allow internal behavior “⟨𝜀⟩ …” between observations:

delay [𝑝, 𝑄]a 0,0,0,0,0,0,0,0 [𝑝, 𝑄′]𝜀
a if 𝑄 ↠ 𝑄′,

procrastination [𝑝, 𝑄]𝜀
a

0,0,0,0,0,0,0,0 [𝑝′, 𝑄]𝜀
a if 𝑝 𝜏−→ 𝑝′, 𝑝 ≠ 𝑝′,

moves to represent the known HML constructs “⟨𝑎⟩ …”, “⋀{… }”, and “¬ …”
in the now two contexts:

observation [𝑝, 𝑄]𝜀
a

−1,0,0,0,0,0,0,0 [𝑝′, 𝑄′]a if 𝑝 𝑎−→ 𝑝′, 𝑄 𝑎−→ 𝑄′, 𝑎 ≠ 𝜏 ,
finishing [𝑝,∅]a 0,0,0,0,0,0,0,0 (𝑝,∅)d,

immediate conj. [𝑝, 𝑄]a 0,0,0,0,−1,0,0,0 (𝑝, 𝑄)d if 𝑄 ≠ ∅,
late conj. [𝑝, 𝑄]𝜀

a
0,0,0,0,0,0,0,0 (𝑝, 𝑄)d,

conj. answer (𝑝, 𝑄)d 0,0,−1,0,0,0,0,0 [𝑝, 𝑞]∧
a if 𝑞 ∈ 𝑄,

positive conjunct [𝑝, 𝑞]∧
a

min{1,6},0,0,0,0,0,0,0 [𝑝, 𝑄]𝜀
a if {𝑞} ↠ 𝑄,

negative conjunct [𝑝, 𝑞]∧
a

min{1,7},0,0,0,0,0,0,−1 [𝑞, 𝑄]𝜀
a if {𝑝} ↠ 𝑄 and 𝑝 ≠ 𝑞,

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Spectroscopy_Game.html#Spectroscopy_Game.LTS_Tau.spectroscopy_moves%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Spectroscopy_Game.html#Spectroscopy_Game.LTS_Tau.spectroscopy_moves%7Cconst
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moves to encode stable conjunctions “⋀{¬⟨𝜏⟩⊤, 𝜓, 𝜓, ...}”:

stable conj. [𝑝, 𝑄]𝜀
a

0,0,0,0,0,0,0,0 (𝑝, 𝑄′)𝑠
d if 𝑄′ = {𝑞 ∈ 𝑄 ∣ 𝑞 𝜏↛}, 𝑝 𝜏↛,

stable conj. answer (𝑝, 𝑄)𝑠
d

0,0,0,−1,0,0,0,0 [𝑝, 𝑞]∧
a if 𝑞 ∈ 𝑄,

stable finishing (𝑝,∅)𝑠
d

0,0,0,−1,0,0,0,−1 (𝑝,∅)d,

and moves to encode branching conjunctions “⋀{(𝛼)𝜑, 𝜓, 𝜓, ...}”:

branching conj. [𝑝, 𝑄]𝜀
a

0,0,0,0,0,0,0,0 (𝑝, 𝛼, 𝑝′, 𝑄 ∖ 𝑄𝛼, 𝑄𝛼)𝜂
d if 𝑝 (𝛼)−−→ 𝑝′, 𝑄𝛼 ⊆ 𝑄,

branch. answer (𝑝, 𝛼, 𝑝′, 𝑄, 𝑄𝛼)𝜂
d

0,−1,−1,0,0,0,0,0 [𝑝, 𝑞]∧
a if 𝑞 ∈ 𝑄,

branch. observation (𝑝, 𝛼, 𝑝′, 𝑄, 𝑄𝛼)𝜂
d

min{1,6},−1,−1,0,0,0,0,0 [𝑝′, 𝑄′]𝜂
a with 𝑄𝛼

(𝛼)−−→ 𝑄′,
branch. accounting [𝑝, 𝑄]𝜂

a
−1,0,0,0,0,0,0,0 [𝑝, 𝑄]a.

Intuitively, the attacker is heavily weakened in the weak spectroscopy game
due to the requirement to pass delay-moves in order to formulate observa-
tion attacks. Following Idea 11, these moves grow the right-hand-sets, which
increases defender options. At the same time, there are several new tactical
possibilities for the attacker that correspond to the special weak conjunctions,
as can be seen in the following example.

Example 7.1 (Failures of philosophy). For our standard philosopher system of
Figure 2.3, Example 6.2 has determined that P and Q are not weakly bisimilar,
but weakly similar (and thus weakly trace-equivalent).

The stable failure ⟨𝜀⟩ ⋀{¬⟨𝜀⟩⟨a⟩} discussed in Section 6.2.2 corresponds
to the following game moves, which need budget (1, 0, 0, 1, 0, 0, 1, 1):

[P, {Q}]a 0 [P, {Q, qab}]𝜖
a (delay)

0 [pb, {Q, qab}]𝜖
a (procrastination)

0 (pb, {qab})d (stable conj.)
−ê4 [pb, qab]∧

a (stable conj. answer)
min{1,7},0,0,0,0,0,0,−1 [qab, {pb}]𝜖

a (negative conjunct)
−ê1 [q1,∅]a (a-observation)

0 (q1,∅)d ›/› (finishing)

A similar sequence of moves works for weak failures. For weak simulation,
we know that P is strongly simulated by Q, which transfers to the weak game
in the sense that we also cannot find a weak simulation distinction in this
direction. The attackermust pass through a negative-conjunctmove to exploit
that P resolves the choice more quickly than Q.

For the other direction, Example 6.2 has established that weak simula-
tion, Q ⪯WS P, holds as well. But how does this go together with Exam-
ple 5.3 mentioning that strong simulation is disproved by the HML formula
⟨𝜏⟩ ⋀{⟨a⟩, ⟨b⟩}? In the weak game, there are no strong 𝜏 -observation moves.
The closest weak equivalent is to just use delay/procrastination, correspond-
ing to the HMLSRBB formula ⟨𝜀⟩ ⋀{⟨𝜀⟩⟨a⟩, ⟨𝜀⟩⟨b⟩}. But this fails to be a dis-
tinction in the weak game as the defender can just stay at P ∈ {P, pa, pb}.
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118 inductive Strategy_Formulas.weak
_spectroscopy_game.strategy_formula

119 lemma Strategy_Formulas.weak
_spectroscopy_game.winning_budget_implies
_strategy_formula

However, other forms of abstracted simulation can be used to force the
defender out of P without negations:

• 𝜂-simulation allows branching conjunctionmoves: [qab, {P, pa, pb}]𝜖
a

0

(qab, a, q1, {pa}, {P, pb})𝜂
d . After this, pa is discharged through a posi-

tive conjunct b-observation, possible from qab; and the {P, pb}-option
directly ends in [q1,∅]𝜂

a (q1,∅)d ›/›, as neither P nor pb
allow immediate a−→-steps. These moves cost (1, 1, 1, 0, 0, 1, 0, 0) and
correspond to the distinguishing formula ⟨𝜀⟩ ⋀{(a), ⟨𝜀⟩⟨b⟩}.

• Stable simulation allows stable conjunctionmoves: [qab, {P, pa, pb}]𝜖
a

0

(qab, {�P, pa, pb})𝑠
d. After this, qab can out-maneuver pa through pos-

itive conjunct b-observation, and pb through positive conjunct
a-observation. The moves need (1, 0, 1, 1, 0, 1, 0, 1) energy and match
the distinguishing formula ⟨𝜀⟩ ⋀{¬⟨𝜏⟩, ⟨𝜀⟩⟨a⟩, ⟨𝜀⟩⟨b⟩}.

In summary, the game moves show that P and Q are weakly similar, but no
notion besides or above in the weak spectrum (Figure 6.5) can hold because
weak failures, stable failures, 𝜂-simulation, and stable simulation can be dis-
proven by attacker moves for at least one direction. This reasoning, of course,
depends on the weak spectroscopy game being correct …

7.1.2 Correctness

Establishing correctness now proceeds mostly as we are used to from Sec-
tion 4.2.3 and 5.1.2. This subsection limits itself to citing the lemma heads and
the inductive predicates used in the full proofs of Bisping & Jansen (2025).

The following facts moreover have been fully formalized in Isabelle/HOL,
which will be the topic of the following Section 7.1.3.

Definition 7.2 (Strategy formulas for G∇). The set of strategy formulas for a
game position 𝑔 and a budget 𝑒, Strat∇(𝑔, 𝑒), in the context of a weak spec-
troscopy game GS

∇ is defined inductively by the rules in Figure 7.2.118

Attacker winning budgets can be translated into strategy formulas of match-
ing price, as illustrated in Example 7.1.

Lemma 7.1 (Distinction formulatability). If 𝑒 ∈ WinG∇
a ([𝑝, 𝑄]a), then there is

𝜑 ∈ Strat∇([𝑝, 𝑄]a, 𝑒) with exprweak(𝜑) ≤ 𝑒.119

Approach. By induction over game positions 𝑔 and energies 𝑒 according to the
inductive characterization of attacker winning budgets Proposition 4.3 and
with respect to the following property:

1. If 𝑒 ∈ Wina([𝑝, 𝑄]a), then there is 𝜑 ∈ Strat∇([𝑝, 𝑄]a, 𝑒) with
exprweak(𝜑) ≤ 𝑒;

2. If 𝑒 ∈ Wina([𝑝, 𝑄]𝜀
a), then there is 𝜒 ∈ Strat∇([𝑝, 𝑄]𝜀

a, 𝑒) with
expr𝜀(𝜒) ≤ 𝑒;

3. If 𝑒 ∈ Wina([𝑝, 𝑞]∧
a), then there is 𝜓 ∈ Strat∇([𝑝, 𝑞]∧

a, 𝑒) with
expr∧(𝜓) ≤ 𝑒;
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delay
[𝑝, 𝑄]a 𝑢 [𝑝, 𝑄′]𝜀

a 𝑒′ = upd(𝑢, 𝑒) ∈ Wina([𝑝, 𝑄′]𝜀
a) 𝜒 ∈ Strat∇([𝑝, 𝑄′]𝜀

a, 𝑒′)
⟨𝜀⟩𝜒 ∈ Strat∇([𝑝, 𝑄]a, 𝑒)

procrastination
[𝑝, 𝑄]𝜀

a
𝑢 [𝑝′, 𝑄]𝜀

a 𝑒′ = upd(𝑢, 𝑒) ∈ Wina([𝑝′, 𝑄]𝜀
a) 𝜒 ∈ Strat∇([𝑝′, 𝑄]𝜀

a, 𝑒′)
𝜒 ∈ Strat∇([𝑝, 𝑄]𝜀

a, 𝑒)

observation

[𝑝, 𝑄]𝜀
a

𝑢 [𝑝′, 𝑄′]a 𝑒′ = upd(𝑢, 𝑒) ∈ Wina([𝑝′, 𝑄′]a)
𝑝 𝑎−→ 𝑝′ 𝑄 𝑎−→ 𝑄′ 𝜑 ∈ Strat∇([𝑝′, 𝑄′]a, 𝑒′)

⟨𝑎⟩𝜑 ∈ Strat∇([𝑝, 𝑄]𝜀
a, 𝑒)

immediate conj. [𝑝, 𝑄]a 𝑢 (𝑝, 𝑄)d 𝑒′ = upd(𝑢, 𝑒) ∈ Wina((𝑝, 𝑄)d) 𝜑 ∈ Strat∇((𝑝, 𝑄)d, 𝑒′)
𝜑 ∈ Strat∇([𝑝, 𝑄]a, 𝑒)

late conj. [𝑝, 𝑄]𝜀
a

𝑢 (𝑝, 𝑄)d 𝑒′ = upd(𝑢, 𝑒) ∈ Wina((𝑝, 𝑄)d) 𝜒 ∈ Strat∇((𝑝, 𝑄)d, 𝑒′)
𝜒 ∈ Strat∇([𝑝, 𝑄]𝜀

a, 𝑒)

conj. answer

(𝑝, 𝑄)d
𝑢𝑞 [𝑝, 𝑞]∧

a

∀𝑞 ∈ 𝑄. 𝑒𝑞 = upd(𝑢𝑞, 𝑒) ∈ Wina([𝑝, 𝑞]∧
a) ∧ 𝜓𝑞 ∈ Strat∇([𝑝, 𝑞]∧

a, 𝑒𝑞)
⋀{𝜓𝑞 ∣ 𝑞 ∈ 𝑄} ∈ Strat∇((𝑝, 𝑄)d, 𝑒)

positive conjunct
[𝑝, 𝑞]∧

a
𝑢 [𝑝, 𝑄′]𝜀

a 𝑒′ = upd(𝑢, 𝑒) ∈ Wina([𝑝, 𝑄′]𝜀
a) 𝜒 ∈ Strat∇([𝑝, 𝑄′]𝜀

a, 𝑒′)
⟨𝜀⟩𝜒 ∈ Strat∇([𝑝, 𝑞]∧

a, 𝑒)

negative conjunct
[𝑝, 𝑞]∧

a
𝑢 [𝑞, 𝑃 ′]𝜀

a 𝑒′ = upd(𝑢, 𝑒) ∈ Wina([𝑞, 𝑃 ′]𝜀
a) 𝜒 ∈ Strat∇([𝑞, 𝑃 ′]𝜀

a, 𝑒′)
¬⟨𝜀⟩𝜒 ∈ Strat∇([𝑝, 𝑞]∧

a, 𝑒)

stable conj. [𝑝, 𝑄]𝜀
a

𝑢 (𝑝, 𝑄′)𝑠
d 𝑒′ = upd(𝑢, 𝑒) ∈ Wina((𝑝, 𝑄′)𝑠

d) 𝜒 ∈ Strat∇((𝑝, 𝑄′)𝑠
d, 𝑒′)

𝜒 ∈ Strat∇([𝑝, 𝑄]𝜀
a, 𝑒)

stable conj. answer

(𝑝, 𝑄)𝑠
d

𝑢𝑞 [𝑝, 𝑞]∧
a 𝑄 ≠ ∅

∀𝑞 ∈ 𝑄. 𝑒𝑞 = upd(𝑢𝑞, 𝑒) ∈ Wina([𝑝, 𝑞]∧
a) ∧ 𝜓𝑞 ∈ Strat∇([𝑝, 𝑞]∧

a, 𝑒𝑞)
⋀ ({¬⟨𝜏⟩⊤} ∪ {𝜓𝑞 ∣ 𝑞 ∈ 𝑄}) ∈ Strat∇((𝑝, 𝑄)𝑠

d, 𝑒)

stable finishing
(𝑝,∅)𝑠

d
𝑢 (𝑝,∅)d 𝑒′ = upd(𝑢, 𝑒) ∈ Wina((𝑝,∅)d)
⋀{¬⟨𝜏⟩⊤} ∈ Strat∇((𝑝, 𝑄)𝑠

d, 𝑒)

branching conj.
[𝑝, 𝑄]𝜀

a
𝑢 (𝑝, 𝛼, 𝑝′, 𝑄′, 𝑄𝛼)𝜂

d 𝑒′ = upd(𝑢, 𝑒) ∈ Wina((𝑝, 𝛼, 𝑝′, 𝑄′, 𝑄𝛼)𝜂
d)

𝜒 ∈ Strat∇((𝑝, 𝛼, 𝑝′, 𝑄′, 𝑄𝛼)𝜂
d , 𝑒′)

𝜒 ∈ Strat∇([𝑝, 𝑄]𝜀
a, 𝑒)

branch. answer

𝑔d = (𝑝, 𝛼, 𝑝′, 𝑄, 𝑄𝛼)𝜂
d

𝑢𝛼 [𝑝′, 𝑄′]𝜂
a

𝑢′𝛼 [𝑝′, 𝑄′]a
𝑒𝛼 = upd(𝑢′

𝛼, upd(𝑢𝛼, 𝑒)) ∈ Wina([𝑝′, 𝑄′]a) 𝜑𝛼 ∈ Strat∇([𝑝′, 𝑄′]a, 𝑒𝛼)
∀𝑞 ∈ 𝑄. 𝑔d

𝑢𝑞 [𝑝, 𝑞]∧
a ∧ 𝑒𝑞 = upd(𝑢𝑞, 𝑒) ∈ Wina([𝑝, 𝑞]∧

a) ∧ 𝜓𝑞 ∈ Strat∇([𝑝, 𝑞]∧
a, 𝑒𝑞)

⋀ ({(𝛼)𝜑𝛼} ∪ {𝜓𝑞 ∣ 𝑞 ∈ 𝑄}) ∈ Strat∇((𝑝, 𝛼, 𝑝′, 𝑄, 𝑄𝛼)𝜂
d , 𝑒)

Figure 7.2: Strategy formulas for the weak spectroscopy.
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120 lemma Strategy_Formulas.weak
_spectroscopy_game.strategy_formulas
_distinguish

121 lemma Distinction_Implies_Winning
_Budgets.weak_spectroscopy_game
.distinction_implies_winning_budgets

4. If 𝑒 ∈ Wina((𝑝, 𝑄)d), then there is ⋀ Ψ ∈ Strat∇((𝑝, 𝑄)d, 𝑒) with
expr𝜀(⋀ Ψ) ≤ 𝑒;

5. If 𝑒 ∈ Wina((𝑝, 𝑄)𝑠
d), then there is⋀ ({¬⟨𝜏⟩⊤} ∪ Ψ) ∈ Strat∇((𝑝, 𝑄)𝑠

d, 𝑒)
with expr𝜀(⋀ ({¬⟨𝜏⟩⊤} ∪ Ψ)) ≤ 𝑒;

6. If 𝑒 ∈ Wina((𝑝, 𝛼, 𝑝′, 𝑄 ∖ 𝑄𝛼, 𝑄𝛼)𝜂
d), then there is ⋀ ({(𝛼)𝜑′} ∪ Ψ) ∈

Strat∇((𝑝, 𝛼, 𝑝′, 𝑄 ∖ 𝑄𝛼, 𝑄𝛼)𝜂
d , 𝑒) with expr𝜀(⋀ ({(𝛼)𝜑′} ∪ Ψ)) ≤ 𝑒.

Weak strategy formulas distinguish the left state from the set of states on the
right, where we lift Definition 2.13 to sets as follows:

Definition 7.3 (Distinguishes from set). We say a formula 𝜑 distinguishes a
state 𝑝 ∈ P from a set of states 𝑄 ⊆ P iff 𝑝 ∈ J𝜑K and 𝑄 ∩ J𝜑K = ∅.

Lemma 7.2 (Distinction soundness). If 𝜑 ∈ Strat∇([𝑝, 𝑄]a, 𝑒), then 𝜑 distin-
guishes 𝑝 from 𝑄.120

Approach. By induction over the derivation of ⋯ ∈ Strat∇(𝑔, 𝑒) according
to Definition 7.2 on the following inductive property:

1. If 𝜑 ∈ Strat∇([𝑝, 𝑄]a, 𝑒), then 𝜑 distinguishes 𝑝 from 𝑄;
2. If 𝜒 ∈ Strat∇([𝑝, 𝑄]𝜀

a, 𝑒) and 𝑄 ↠ 𝑄, then ⟨𝜀⟩𝜒 distinguishes 𝑝 from
𝑄;

3. If 𝜓 ∈ Strat∇([𝑝, 𝑞]∧
a, 𝑒), then 𝜓 distinguishes 𝑝 from {𝑞};

4. If ⋀ Ψ ∈ Strat∇((𝑝, 𝑄)d, 𝑒), then ⋀ Ψ distinguishes 𝑝 from 𝑄;
5. If⋀ ({¬⟨𝜏⟩⊤} ∪ Ψ) ∈ Strat∇((𝑝, 𝑄)𝑠

d, 𝑒) and 𝑝 is stable, then the stable
conjunction ⋀ ({¬⟨𝜏⟩⊤} ∪ Ψ) distinguishes 𝑝 from 𝑄;

6. If ⋀ ({(𝛼)𝜑′} ∪ Ψ) ∈ Strat∇((𝑝, 𝛼, 𝑝′, 𝑄 ∖ 𝑄𝛼, 𝑄𝛼)𝜂
d , 𝑒), 𝑝 (𝛼)−−→ 𝑝′

and 𝑄𝛼 ⊆ 𝑄, then the branching conjunction ⋀ ({(𝛼)𝜑′} ∪ Ψ) dis-
tinguishes 𝑝 from 𝑄.

Distinguishing formulas certify the existence of equally cheap ways for the
attacker to win.

Lemma 7.3 (Distinction completeness). If 𝜑 ∈ HMLSRBB distinguishes 𝑝 from
𝑄, then exprweak(𝜑) ∈ WinG∇

a ([𝑝, 𝑄]a).121

Approach. By mutual structural induction on 𝜑, 𝜒, and 𝜓 with respect to the
following claims:

1. If 𝜑 ∈ HMLSRBB distinguishes 𝑝 from 𝑄 ≠ ∅, then exprweak(𝜑) ∈
Wina([𝑝, 𝑄]a);

2. If 𝜒 distinguishes 𝑝 from 𝑄 ≠ ∅ and 𝑄 is closed under ↠ (that is 𝑄 ↠
𝑄), then expr𝜀(𝜒) ∈ Wina([𝑝, 𝑄]𝜀

a);
3. If 𝜓 distinguishes 𝑝 from 𝑞, then expr∧(𝜓) ∈ Wina([𝑝, 𝑞]∧

a);
4. If ⋀ Ψ distinguishes 𝑝 from 𝑄 ≠ ∅, then expr𝜀(⋀ Ψ) ∈ Wina((𝑝, 𝑄)d);
5. If ⋀{¬⟨𝜏⟩⊤} ∪ Ψ distinguishes 𝑝 from 𝑄 ≠ ∅ and the processes in 𝑄

are stable, then expr𝜀(⋀{¬⟨𝜏⟩⊤} ∪ Ψ) ∈ Wina((𝑝, 𝑄)𝑠
d);
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122 theorem Silent_Step_Spectroscopy.weak
_spectroscopy_game.spectroscopy_game
_correctness

123 For questions on the Isabelle/Isar language,
consultThe Isabelle/Isar reference manual (Wen-
zel, 2025).

124 To be precise: “Partial function” here means
that it returns option-values, which might ei-
ther be Some x with an output or None other-
wise. All functions in higher-order logic are to-
tal.
125 datatype Spectroscopy_Game
.spectroscopy_position

6. If ⋀{(𝛼)𝜑′} ∪ Ψ distinguishes 𝑝 from 𝑄, then, for any 𝑝 (𝛼)−−→ 𝑝′ ∈ J𝜑′K
and 𝑄𝛼 = 𝑄 ∖ J⟨𝛼⟩𝜑′K, expr𝜀(⋀{(𝛼)𝜑′} ∪ Ψ) ∈ Wina((𝑝, 𝛼, 𝑝′, 𝑄 ∖
𝑄𝛼, 𝑄𝛼)𝜂

d).

Theorem 7.1 (Nweak-characterization). For all 𝑁 ∈ Nweak, 𝑝 ∈ P , 𝑄 ∈ 2P, the
following are equivalent:122

• There exists a formula 𝜑 ∈ HMLSRBB with price exprweak(𝜑) ≤ 𝑁 that
distinguishes 𝑝 from 𝑄.

• Attacker wins GS
∇ from [𝑝, 𝑄]a with energy 𝑁 .

7.1.3 Isabelle/HOL Formalization

Barthel et al. (2025) formalize the correctness result for theweak spectroscopy
game in the interactive proof assistant Isabelle/HOL. The preceding defini-
tions and facts have already linked to their respective Isabelle/HOL counter-
parts. This subsection is devoted to providing some insights into the formal-
ization.123 We take a tour through roughly a hundred of the most interesting
lines of the 6500 line theory development.

The weak spectroscopy game (Definition 7.1) is modelled through a para-
metric datatype ('s, 'a) spectroscopy_position for its positions and a par-
tial function spectroscopy_moves to determine themoves connecting them.124
The parameter types 's and 'a capture the states P and actions Act of the
transition system on which we operate.125

datatype ('s, 'a) spectroscopy_position =

Attacker_Immediate

(attacker_state: ‹'s›) (defender_states: ‹'s set›)

| Attacker_Delayed

(attacker_state: ‹'s›) (defender_states: ‹'s set›)

[...]

| Defender_Branch

(attacker_state: ‹'s›) (attack_action: ‹'a›)

(attacker_state_succ: ‹'s›)

(defender_states: ‹'s set›)

(defender_branch_states: ‹'s set›)

fun spectroscopy_moves (in LTS_Tau) ::

‹('s, 'a) spectroscopy_position ⇒ ('s, 'a) spectroscopy_position

⇒ energy update option›

where
delay: ‹spectroscopy_moves

(Attacker_Immediate p Q) (Attacker_Delayed p' Q')

= (if p' = p ∧ Q ↠S Q' then id_up else None)›

| [...]
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https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Silent_Step_Spectroscopy.html#Silent_Step_Spectroscopy.weak_spectroscopy_game.spectroscopy_game_correctness%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Spectroscopy_Game.html#Spectroscopy_Game.spectroscopy_position%7Ctype
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Spectroscopy_Game.html#Spectroscopy_Game.spectroscopy_position%7Ctype
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126 locale Spectroscopy_Game.weak
_spectroscopy_game

127 inductive Strategy_Formulas.weak
_spectroscopy_game.strategy_formula

128 lemma Strategy_Formulas.weak
_spectroscopy_game.winning_budget_implies
_strategy_formula

The game itself is then built as a combination of the locale for transition sys-
tems with internal actions LTS_Tau (with a transition relation step) and an
energy_game locale. The latter is instantiated with the moves, a predicate
spectroscopy_defender singling out defender positions, and the ≤-relation
on 8-dimensional energies.126

locale weak_spectroscopy_game =

LTS_Tau step τ

+ energy_game ‹spectroscopy_moves› ‹spectroscopy_defender› ‹(≤)›

for step :: ‹'s ⇒ 'a ⇒ 's ⇒ bool› (‹_ ↦_ _› [70, 70, 70] 80)

and τ :: 'a

Within the locale, we can establish our correctness results.
The strategy formulas Strat∇ appear as three mutually inductive predi-

cates, because the grammar of HMLSRBB (Definition 6.5) is implemented as
three mutually recursive data types (one per non-terminal).127

inductive
strategy_formula :: ‹('s, 'a) spectroscopy_position

⇒ energy ⇒ ('a, 's) hml_srbb ⇒ bool›

and
strategy_formula_inner :: ‹('s, 'a) spectroscopy_position

⇒ energy ⇒ ('a, 's) hml_srbb_inner ⇒ bool›

and
strategy_formula_conjunct :: ‹('s, 'a) spectroscopy_position

⇒ energy ⇒ ('a, 's) hml_srbb_conjunct ⇒ bool›

where
delay: ‹strategy_formula (Attacker_Immediate p Q) e (Internal χ)›

if ‹∃Q'. spectroscopy_moves

(Attacker_Immediate p Q) (Attacker_Delayed p Q') = id_up

∧ attacker_wins e (Attacker_Delayed p Q')

∧ strategy_formula_inner (Attacker_Delayed p Q') e χ›

| [...]

We then reproduce the induction of Lemma 7.1 on attackerwinning budgets in
the following lemma. For this, the theory uses the inductive characterization
of Wina in Proposition 4.3 as definition for attacker_wins.128

lemma winning_budget_implies_strategy_formula:

assumes ‹attacker_wins e g›

shows
‹case g of

Attacker_Immediate p Q ⇒

∃φ. strategy_formula g e φ ∧ expressiveness_price φ ≤ e

| Attacker_Delayed p Q ⇒

∃χ. strategy_formula_inner g e χ ∧ expr_pr_inner χ ≤ e

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Spectroscopy_Game.html#Spectroscopy_Game.weak_spectroscopy_game%7Clocale
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Spectroscopy_Game.html#Spectroscopy_Game.weak_spectroscopy_game%7Clocale
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Strategy_Formulas.html#Strategy_Formulas.weak_spectroscopy_game.strategy_formula%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Strategy_Formulas.html#Strategy_Formulas.weak_spectroscopy_game.strategy_formula%7Cconst
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Strategy_Formulas.html#Strategy_Formulas.weak_spectroscopy_game.winning_budget_implies_strategy_formula%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Strategy_Formulas.html#Strategy_Formulas.weak_spectroscopy_game.winning_budget_implies_strategy_formula%7Cfact
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129 lemma Strategy_Formulas.weak
_spectroscopy_game.strategy_formulas
_distinguish

| Attacker_Conjunct p q ⇒

∃ψ. strategy_formula_conjunct g e ψ

∧ expr_pr_conjunct ψ ≤ e

| Defender_Conj p Q ⇒

∃χ. strategy_formula_inner g e χ ∧ expr_pr_inner χ ≤ e

| Defender_Stable_Conj p Q ⇒

∃χ. strategy_formula_inner g e χ ∧ expr_pr_inner χ ≤ e

| Defender_Branch p α p' Q Qa ⇒

∃χ. strategy_formula_inner g e χ ∧ expr_pr_inner χ ≤ e

| Attacker_Branch p Q ⇒

∃φ. strategy_formula

(Attacker_Immediate p Q) (e - E 1 0 0 0 0 0 0 0) φ

∧ expressiveness_price φ ≤ e - E 1 0 0 0 0 0 0 0›

using assms

proof (induction rule: attacker_wins.induct)

[...]

There are superficial differences due to the different medium. For instance,
note that the inductive predicate in the Isabelle theory has a seventh case
for Attacker_Branch / [ … ]𝜂

a that does not exist in the “paper version” of
Lemma 7.1. This is more natural for the “case ... of ...” formulation in
the formalization, and addresses a technicality that Bisping & Jansen (2025)
handle in the proof body.

The (mutual) induction on the formula structure to establish the distinc-
tiveness of Strat∇-formulas of Lemma 7.2 begins:129

lemma strategy_formulas_distinguish:

‹(strategy_formula g e φ ⟶

(case g of

Attacker_Immediate p Q ⇒

distinguishes_from φ p Q

| Defender_Conj p Q ⇒

distinguishes_from φ p Q

| _ ⇒ True))

∧

(strategy_formula_inner g e χ ⟶

(case g of

Attacker_Delayed p Q ⇒

(Q ↠S Q) ⟶ distinguishes_from (Internal χ) p Q

| Defender_Conj p Q ⇒

hml_srbb_inner.distinguishes_from χ p Q

| Defender_Stable_Conj p Q ⇒

(∀q. ¬ p ↦ τ q)

⟶ hml_srbb_inner.distinguishes_from χ p Q

| Defender_Branch p α p' Q Qa ⇒

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Strategy_Formulas.html#Strategy_Formulas.weak_spectroscopy_game.strategy_formulas_distinguish%7Cfact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Strategy_Formulas.html#Strategy_Formulas.weak_spectroscopy_game.strategy_formulas_distinguish%7Cfact
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130 lemma Distinction_Implies_Winning
_Budgets.weak_spectroscopy_game
.distinction_implies_winning_budgets

131 theorem Silent_Step_Spectroscopy.weak
_spectroscopy_game.spectroscopy_game
_correctness

(p ↦a α p')

⟶ hml_srbb_inner.distinguishes_from χ p (Q∪Qa)

| _ ⇒ True))

∧

(strategy_formula_conjunct g e ψ ⟶

(case g of

Attacker_Conjunct p q ⇒

hml_srbb_conj.distinguishes ψ p q

| _ ⇒ True))›

proof (induction rule:

strategy_formula_strategy_formula_inner_[...].induct)

[...]

For the other direction, the following expresses distinction completeness
(Lemma 7.3) that attacks exist for formulas.130

lemma distinction_implies_winning_budgets:

assumes ‹distinguishes_from φ p Q›

shows ‹attacker_wins (expressiveness_price φ)

(Attacker_Immediate p Q)›

The main theorem Theorem 7.1 combines the previous facts and the upward-
closedness of attacker winning budgets win_a_upwards_closure. This is quite
straightforward. The following listing reproduces it in full to convey an idea
of what Isar proofs look like.131

theorem spectroscopy_game_correctness:

shows
‹(∃φ. distinguishes_from φ p Q ∧ expressiveness_price φ ≤ e)

⟷ attacker_wins e (Attacker_Immediate p Q)›

proof
assume

‹∃φ. distinguishes_from φ p Q ∧ expressiveness_price φ ≤ e›

then obtain φ where φ_spec:

‹distinguishes_from φ p Q› ‹expressiveness_price φ ≤ e›

by blast

from distinction_implies_winning_budgets φ_spec(1) have
‹attacker_wins

(expressiveness_price φ) (Attacker_Immediate p Q)› .

thus ‹attacker_wins e (Attacker_Immediate p Q)›

using win_a_upwards_closure φ_spec(2) by simp

next
assume ‹attacker_wins e (Attacker_Immediate p Q)›

with winning_budget_implies_strategy_formula have
‹∃φ. strategy_formula (Attacker_Immediate p Q) e φ

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Distinction_Implies_Winning_Budgets.html#Distinction_Implies_Winning_Budgets.weak_spectroscopy_game.distinction_implies_winning_budgets%7Cfact
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∧ expressiveness_price φ ≤ e›

by force

hence
‹∃φ. strategy_formula (Attacker_Immediate p Q) e φ

∧ expressiveness_price φ ≤ e›

by blast

thus ‹∃φ. distinguishes_from φ p Q ∧ expressiveness_price φ ≤ e›

using strategy_formulas_distinguish by fastforce

qed

In Chapter 2, we started our journey of connecting attacker strategies and
distinguishing formulas in Theorem 2.3. In retrospect, it is just a corollary of
this formalized theorem.

7.1.4 Complexity

The complexity of spectroscopy using the weak game is quite comparable to
the strong spectroscopy (Theorem 5.2).

Theorem 7.2 (Weak spectroscopy complexity). Given a transition system S ,
the spectroscopy problem for the Nweak-spectrum can be solved by the game ap-
proach in exponential time and space with respect to the state space size |P|.

Proof. According to Theorem 7.1, we can solve the spectroscopy problem
for the Nweak-spectrum by deciding the winning budgets of the weak spec-
troscopy game GS

∇ on S = (P,Act, −→). We instantiate the winning budget
complexity of Lemma 4.5 for the case 𝑑 = 8 with the size of G∇ according to
Definition 7.1.

The number of attacker positions [ … ]a (and their delayed [ … ]𝜀
a and

branching [ … ]𝜂
a variants) is bounded by O(|P| ⋅ 2|P |). The number of

conjunction moves and defender conjunction positions ( … )d is bounded by
|P| ⋅ 2|P |, also for the stable variant ( … )𝑠

d.
However, for the branching conjunctionmoves, we find a bound ofO(|−→|⋅

2|P |) per attacker delayed position (which is a slight over-approximation).
Collectively, these moves reach O(|−→| ⋅ 3|P |) defender branching positions
(𝑝, 𝛼, 𝑝′, 𝑄 ∖ 𝑄𝛼, 𝑄𝛼)𝜂

d , due the three-coloring of states into 𝑄 ∖ 𝑄𝛼, 𝑄𝛼 and
P ∖ 𝑄.

The maximal out-degree for attacker delayed positions of O(|−→| ⋅ 2|P |)
dominates that of other positions, in particular, of defender conjunction, sta-
ble conjunction, and branching positions with O(|P|) outgoing options.

This amounts to 𝑜
∇

in O(|−→| ⋅ 2|P |) and to |𝐺∇| in O(|−→| ⋅ 3|P |). In-
serting the parameters in the time bounds of Lemma 4.5 yields:

𝑂( 𝑜 ⋅ |𝐺|2⋅𝑑 ⋅ (𝑑2 + |𝐺|𝑑−1 ⋅ 𝑑) )
= 𝑂( (|−→| ⋅ 2|P |) ⋅ (|−→| ⋅ 3|P |)2⋅8 ⋅ (82 + (|−→| ⋅ 3|P |)8−1 ⋅ 8) )
= 𝑂( |−→| ⋅ 2|P | ⋅ |−→|16 ⋅ 316|P | ⋅ |−→|7 ⋅ 37|P | )
⊆ 𝑂( |−→|24 ⋅ 324|P | ).
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For space complexity, we arrive at O(|−→|8 ⋅ 38|P |).

The exponential out-degree is due to branching conjunctionmoves. That these
would need exponentially many outgoing moves seems off: These moves are
for 𝜂- and branching bisimilarity, which are known to be at the less expensive
end of equivalence problems in the spectrum (sub-cubic by Groote et al., 2017).
Frutos Escrig et al.’s (2017) branching bisimulation game is polynomially-
sized. Thus, a derived reachability game of the weak spectroscopy game for
branching bisimilarity in the spirit of Section 5.3.1 should, too, be polynomial
in size if we apply clever optimizations. Section 7.3.1 will later show how
to simplify the spectroscopy game to achieve this reduction of size around
branching conjunctions.

7.2 Tackling Our Case Studies

We now return to our examples from Section 6.2, and see how the spec-
troscopy approach can handle the two, and thus support research in concur-
rency theory. For this project, we will use the equiv.io CCS dialect.

7.2.1 Parallelizing Compilers

In Example 6.4, we have discussed the example of parallelizing compilation.
Bell (2013) reports on the search for a fitting notion of equivalence to prove
the equivalence of sequential and parallelized program, PSeq and PPara.

We model the computation of A/B as a parallel process Compute that out-
puts one of the two options (computeA/computeB). In P_Seq, the computation
has to happen before the visible output action printOutput! starts, followed
by the printing of the computed value, printA! or printB!. In P_Para, the
printOutput! happens in parallel, and the two processes synchronize on join

before continuing to print the computed value. For both processes, the syn-
chronizing actions, that is, computeA, computeB, and join, are restricted to
internal use.

Interactive model on equiv.io. Compute = computeA!Compute + computeB!Compute

P_Seq = (
Compute

| computeA.printOutput!printA!
+ computeB.printOutput!printB!

) \ {computeA, computeB}

P_Para = (
Compute

| printOutput!join!
| computeA.join.printA!

https://equiv.io
https://equiv.io/#code=


7.2. Tackling Our Case Studies 139

+ computeB.join.printB!
) \ {computeA, computeB, join}

@compareSilent P_Para, P_Seq

The statement @compareSilent P_Para, P_Seq invokes the weak spectroscopy
on the pair of processes.

As a cheapest distinguishing formula of P_Para from P_Seq, the spec-
troscopy reports ⟨ϵ⟩⟨printOutput!⟩⟨ϵ⟩⋀{⟨ϵ⟩⟨printA!⟩⊤,⟨ϵ⟩⟨printB!⟩⊤}. This
formula disproves weak simulation plus weak readiness and everything above
in the weak spectrum. Theminimality means that all other notions must hold.
These are the equivalences of contrasimilarity and stable bisimilarity, and be-
low.

This nicely shows that our spectroscopy algorithm allows to survey the
whole spectrum of possible equivalences between such small processes in
milliseconds. Such a mechanized survey would certainly have facilitated the
research behind Bell (2013).

7.2.2 𝜏-Abstraction and Failures

Section 6.2.2 has introduced a transition systemwith two states P𝑒 and Pℓ that
perform a nondeterministic op-step. OnlyPℓ can correct the choicewhile idle-
ing. Though both processes are weak-failure-equivalent, their variants P𝜏

𝑒 and
P𝜏

ℓ where idle-steps are relabelled to 𝜏 -steps are not.
To reconstruct this result on equiv.io, we first have to translate the pro-

cesses of Figure 6.4 to CCS. We express P𝑒 and Pℓ as P_e and P_t through
mutual recursion in the following model:

Interactive model on equiv.io.Ae = idle.Ae + a

Be = idle.Be + b

Al = idle.Bl + idle.Al + a

Bl = idle.Al + idle.Bl + b

P_e = op.Ae + op.Be
P_l = op.Al + op.Bl

To implement the hiding of idle in CCS, we use a parallel process that
provides unlimited idle!-actions to synchronize instead of the environment.
Hence, P𝜏

𝑒 and P𝜏
ℓ are expressed as P_te and P_tl:

Idle = idle!Idle
P_te = (P_e | Idle) \ {idle}
P_tl = (P_l | Idle) \ {idle}

We can now use the derived equivalence checkers (along the lines of Sec-
tion 5.3) to establish that P_e and P_l are weak-failure-equivalent, but P_te
and P_tl are not:

https://equiv.io
https://equiv.io/#code=QWUgPSBpZGxlLkFlICsgYQpCZSA9IGlkbGUuQmUgKyBiCkFsID0gaWRsZS5CbCArIGlkbGUuQWwgKyBhCkJsID0gaWRsZS5BbCArIGlkbGUuQmwgKyBiCgpQX2UgPSBvcC5BZSArIG9wLkJlClBfbCA9IG9wLkFsICsgb3AuQmwKCkBzbmlwICItLS0tIGFic3RyYWN0ZWQgcHJvY2Vzc2VzIC0tLS0iCgpJZGxlID0gaWRsZSFJZGxlClBfdGUgPSAoUF9lIHwgSWRsZSkgXCB7aWRsZX0KUF90bCA9IChQX2wgfCBJZGxlKSBcIHtpZGxlfQoKQHNuaXAgIi0tLS0gY2hlY2tzIGFuZCBjb21wYXJpc29uIC0tLS0iCgpAY2hlY2sgd2Vhay1mYWlsdXJlLCBQX2UsIFBfbApAY2hlY2sgd2Vhay1mYWlsdXJlLCBQX3RlLCBQX3RsCgpAY29tcGFyZVNpbGVudCBQX2UsIFBfbApAY29tcGFyZVNpbGVudCBQX3RlLCBQX3RsCgpAc25pcCAiLS0tLSBsYXlvdXQgLS0tLSIKClBfZSh4PTIwMCwgeT0xMCwgbWFpbikKUF9sKHg9NTAwLCB5PTEwLCBtYWluKQpQX3RlKHg9MjAwLCB5PTQ1MCwgbWFpbikKUF90bCh4PTUwMCwgeT00NTAsIG1haW4pCiIwIih4PTM2NSwgeT0zMDQpCiIoMCB8IElkbGUpIFwge2lkbGV9Iih4PTM1MCwgeT03ODAp


140 Chapter 7. Spectroscopy for the Weak Spectrum

132 The bug in the otherwise intriguing pa-
per (Gazda et al., 2020) is that the modal
logic of weak failures is not closed under
adding of weak observation sequences at ⟨𝜀⟩-
operators: ⟨𝜀⟩⟨a⟩⟨𝜀⟩ ⋀{¬⟨𝜀⟩⟨a⟩} ∈ OWF, but
⟨𝜀⟩⟨a⟩⟨𝜀⟩ ⋀{¬⟨𝜀⟩⟨a⟩⟨𝜀⟩⟨a⟩} is too strong for
weak failure equivalence. Their requirement
(ABS) together with the definition of T −1

𝐻
would prescribe that the greatest logic to char-
acterize weak failures contains both, for hiding
to be a congruence. Their Corollary 9 assumes
in error that this kind of pumping were sound
for weak failures.

@check weak-failure, P_e, P_l

> "States are equivalent."

@check weak-failure, P_te, P_tl

> "States are inversely preordered (only from right to left)."

How does this influence research in concurrency theory? Gazda et al. (2020,
Corollary 9) claim that weak failure equivalence would be a congruence for
the hiding operator. In light of our finding, this cannot be right.132

We can go even further and decide all weak equivalences of our spectrum:

@compareSilent P_e, P_l

> "Equated by:

weak-readiness

stable-readiness"

@compareSilent P_te, P_tl

> "Equated by:

stable-bisimulation"

This provides us with the general answer that notions can only be congru-
ences for hiding if they are not below weak/stable readiness, or if they more-
over fall into the hierarchy below stable bisimulation.

7.3 Variants

At this point in the thesis, it hopefully has become quite apparent how our
approach can be varied with respect to game moves and HML hierarchies in
order to add more equivalences or to cut resolution.

This section mainly presents two tricks that are used in the implementa-
tion of equiv.io: Section 7.3.1 shows how to get rid of the subset construction
in branching conjunctions. Section 7.3.2 presents a modification to add sta-
ble revivals, stable failure traces and stable ready traces as notions. In Sec-
tion 7.3.3, we close with some hints how even more nuances in weak equiva-
lences could be covered.

7.3.1 Optimizing Branching Conjunctions

Bisping & Jansen (2025) show how to reduce the out-degree 𝑜 of the weak
spectroscopy game to be linear. For this, we reformulate the branching con-
junction part of the game to be closer to the operational Definition 6.7 of
branching bisimilarity. We can still solve the main spectroscopy problem, but
lose some resolution about the number of nested conjunctions.

If we read Definition 6.7 directly as a game, it differs from the branching
conjunction moves in Definition 7.1, because the latter require the attacker to
name as 𝑄𝛼 ex-ante which 𝑞′ to challenge directly and which ones only after

https://equiv.io
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[𝑝, 𝑄]a [𝑝, 𝑄𝜀]𝜀
a

(𝑝, 𝑄)d

(𝑝, {𝑞 ∈𝑄𝜀 ∣ 𝑞 𝜏↛})𝑠
d

(𝑝, 𝛼, 𝑝′, 𝑄𝜀)𝜂
d [𝑝, 𝛼, 𝑝′, 𝑞]𝜂

a

[𝑝′, 𝑄′
𝛼]𝜂

a

[𝑝, 𝑞]∧
a [𝑞, {𝑝′ ∣ 𝑝 ↠ 𝑝′}]𝜀

a

[𝑝, {𝑞′ ∣ 𝑞 ↠ 𝑞′}]𝜀
a

[𝑝′, 𝑄′]a

(𝑝′, 𝑄′
𝛼)d

𝑄 ↠ 𝑄𝜀
0

𝑄 = ∅
0

𝑄 ≠ ∅
−ê5

𝑝 𝜏−→ … 0

𝑝 𝑎−→ 𝑝′

𝑄𝜀
𝑎−→ 𝑄′

−ê1

𝑄 = 𝑄𝜀0
𝑝 𝜏↛

0

𝑝 (𝛼)−−→ 𝑝′

𝑄𝜀 ≠ ∅

0

𝑞 ∈ 𝑄
−ê3

𝑞 ∈ 𝑄𝜀
𝑞 𝜏↛−ê4

∅ = 𝑄 =
{𝑞 ∈𝑄𝜀 ∣ 𝑞 𝜏↛}

−ê4 − ê8
min{1,6}, 0, 0, 0, 0, 0, 0, 0

𝑝 ≠ 𝑞
min{1,7}, 0, 0, 0, 0, 0, 0, −1

𝑞 ∈ 𝑄𝜀

−ê2 − ê3

{𝑞} (𝛼)−−→ 𝑄′
𝛼

min{1,6}, 0, 0, 0, 0, 0, 0, 0

0

𝑄′
𝛼 ↠ 𝑄′

−ê1 − ê3
𝑄′

𝛼 ≠ ∅ −ê1 − ê5

𝑄′
𝛼 = ∅ −ê1

Figure 7.3: Schematic simplified weak spectroscopy game G∇̂ with adapted branching conjunction section (the
teal part).

133 Credit for the proof details goes to Jansen.

the 𝛼 step, and to have one continuation for the whole 𝑄𝛼 group. The sim-
plified weak spectroscopy game G∇̂ in Figure 7.3 rephrases this part to match
the operational characterization. (This might not be “simpler” conceptionally,
but it will be for the algorithm.)

Intuitively, the simplified game part encodes nested conjunctions of the
form ⋀{(𝛼) ⋀ Ψ′, 𝜓1, …} or the cheaper form ⋀{(𝛼)⟨𝜀⟩ ⋀ Ψ′, 𝜓1, …}. The
Ψ′ are the formulas from after branching observation moves [𝑝, 𝛼, 𝑝′, 𝑞]𝜂

a

[𝑝′, 𝑄′
𝛼]𝜂

a [𝑝′, 𝑄′]a, while the 𝜓𝑖 come from the resets [𝑝, 𝛼, 𝑝′, 𝑞]𝜂
a

[𝑝, 𝑞]∧
a. In Bisping & Jansen (2025), we discuss this game’s strategy formulas

in detail and prove its correctness, resulting in the following theorem.133

Theorem 7.3 (N̂weak characterization). Let the simplified weak notions N̂weak

be the union of ℕ × {0} × ℕ6 and ℕ × {∞} × {0, ∞} × ℕ × {0, ∞} ×
ℕ3. Let simplified expressiveness prices be defined by rounding up the prices of
Definition 6.11: êxprweak = min{𝑁 ∈ N̂weak ∣ exprweak(𝜑) ≤ 𝑁}. Then, on the
simplified weak game G∇̂ of Figure 7.3:

For all 𝑁 ∈ N̂weak, 𝑝 ∈ P , 𝑄 ∈ 2P , the following are equivalent:

• There exists a formula 𝜑 ∈ HMLSRBB with price êxprweak(𝜑) ≤ 𝑁 that
distinguishes 𝑝 from 𝑄.

• Attacker wins GS
∇̂ from [𝑝, 𝑄]a with energy 𝑁 .
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Complexity-wise, for the simplified game, G∇̂, we have just |𝐺∇̂| ∈ O(|−→| ⋅
2|P |) and also 𝑜∇̂ ∈ O(|−→|). Following the same argument as in Theorem 7.2,
deciding thewhole game still has exponential time complexity ofO(|−→|⋅(|−→|⋅
2|P |)16 ⋅(|−→|⋅2|P |)7) = O(|−→|24 ⋅223|P |), and space complexityO(|−→|8 ⋅28|P |).
But these are much lower bounds than in the original game G∇, where we
found O(|−→|24 ⋅ 324|P |) for time and O(|−→|8 ⋅ 38|P |) for space.

The practical difference is huge on transition systems exposing relevant
branching-degreewith respect to internal behavior such as the initial Peterson
system of Figure 1.2: With the optimization, the tool solves it in fractions of
a second, as reported in Table 8.4. Without it, the exponential conjunctions
lead to a game with 121,773 moves, taking 90 seconds.

Moreover, we can again use the trick to work with flattened energies, ac-
cording to Lemma 4.6. After all, G∇̂ itself is only correct with respect to a
simplified spectrum according to Theorem 7.3. If we bound the energy lattice
to {0, 1, ∞}8 the size of Pareto fronts is decoupled from the game size. This
further improves space complexity to O(|−→| ⋅ 2|P |) and overall time complex-
ity to O(|−→| ⋅ (|−→| ⋅ 2|P |)16) = O(|−→|17 ⋅ 216|P |).

7.3.2 Covering Revivals and Decorated Traces

In the weak spectrum of Section 6.3, we left out the notions of revivals, failure
traces, and ready traces, which we had included in the strong spectrum of
Section 3.2.2. Their stable variants are relevant to the CSP community (see
Roscoe, 2009).

As discussed in Example 3.5, these notions need to differentiate between
a deepest “revival” conjunct and other positive conjuncts. Thus, these equiv-
alences need an additional dimension for expr-measurements, and an even
more sophisticated handling of conjunctions in the game.

Figure 7.4 illustrates how one could incorporate revivals into stable con-
junctions, analogously to Chapter 5. Note, that we now have two kinds of
conjunct positions: for the stable non-revival context and for the other con-
texts. The maximal depth of conjuncts is still managed by dimension 6. But
stable non-revival conjuncts receive a new dedicated dimension 7 to bound
their depth. The previous dimensions 7 and 8 now come 8th and 9th.

In this game, stable revivals end up at (∞, 0, 0, 1, 0, 1, 0, 1, 1), sta-
ble failure traces at (∞, 0, 0, 1, 0, ∞, 0, 1, 1), and stable ready traces at
(∞, 0, 0, 1, 0, ∞, 1, 1, 1), analogously to their strong counterparts in Fig-
ure 3.8. Of course, one could again use the “look-ahead trick” of Section 5.2.2
to reduce the number of partitions to consider.

In fact, the implementation on equiv.io does employ this formulation,
thereby actually using a 9-dimensional game with richer stable conjunctions.
Although this thesis remains short on providing a theorem for the game that
contains the stable revival move, tests in the tool (and the theorems for the
strong spectrum) suggest correctness of the variant in Figure 7.4.

https://equiv.io
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[𝑝, 𝑄]a [𝑝, 𝑄𝜀]𝜀
a

(𝑝, 𝑄)d

(𝑝, 𝑄𝑠 ∖ 𝑄∗, 𝑄∗)𝑠
d

…

[𝑝, 𝑞]∧
a [𝑞, {𝑝′ ∣ 𝑝 ↠ 𝑝′}]𝜀

a

[𝑝, {𝑞′ ∣ 𝑞 ↠ 𝑞′}]𝜀
a

[𝑝′, 𝑄′]a

[𝑝, 𝑞]𝑠
a [𝑞, {𝑝}]𝜀

a

[𝑝, {𝑞}]𝜀
a

𝑄 ↠ 𝑄𝜀
0

𝑄 = ∅
0

𝑄 ≠ ∅
−ê5

𝑝 𝜏−→ … 0

𝑝 𝑎−→ 𝑝′

𝑄𝜀
𝑎−→ 𝑄′

−ê1

𝑄 = 𝑄𝜀0

𝑝 𝜏↛
𝑄∗ ⊆ 𝑄𝑠 = {𝑞 ∈ 𝑄𝜀 ∣ 𝑞 𝜏↛}

0

…

𝑞 ∈ 𝑄
−ê3

𝑞 ∈ 𝑄𝑠 ∖ 𝑄∗

0, 0, 0, −1, 0, 0, min{6,7}, 0, 0

𝑄 = ∅−ê4 − ê9

𝑄′ = 𝑄∗, 𝑝′ = 𝑝
min{1,6}, 0, 0, −1, 0, 0, 0, 0, 0

min{1,6}, 0, 0, 0, 0, 0, 0, 0, 0

𝑝 ≠ 𝑞
min{1,8}, 0, 0, 0, 0, 0, 0, 0, −1

…

…

min{1,7}, 0, 0, 0, 0, 0, 0, 0, 0

𝑝 ≠ 𝑞
min{1,8}, 0, 0, 0, 0, 0, 0, 0, −1

Figure 7.4: Modifying stable conjunction moves to include revivals (teal part). The branching bisimulation part
is left out.

7.3.3 Extending to Other Equivalences

At this point, we have coveredmost interesting parts of strong andweak spec-
trum. But there are still more notions one could reach for.

Divergence and completed observations. Logic and game, as we have pre-
sented them, are blind to divergence and completed observations. Van Glabbeek
(1993) uses additional modalities: Δ for divergence with JΔK ≔ {𝑝 ∣ 𝑝 𝜏−→𝜔};
0 for completed observations with J0K ≔ {𝑝 ∣ ∀𝛼 ∈ Act. 𝛼↛} (and 𝜆 ≔ 0∨Δ).

Bisping & Jansen (2024) decide against including these modalities in the
game. At least on finite-state systems, they may be understood to be spe-
cial action observations. Divergence and completion can be added through
pre-processing into a system S before turning to our game of equivalence
questions on S′.

For 0, the transformation from S to S′ is obvious: Add a 𝑝 ✓−→ ⊥ to the
transition system for each 𝑝 ∈ P where 𝑝 𝑎↛ for every 𝑎 ∈ Act (with ✓ and
⊥ fresh). Then J⟨✓⟩⊤KS′ = J0KS .

For divergence on finite-state systems, one may use an argument from
Groote et al. (2017): Add a state ⊥, an action 𝛿 ∉ Act and transitions 𝑝 𝛿−→ ⊥
to the transition system for each 𝑝 ∈ P that lives on a 𝜏 -cycle 𝑝 𝜏−→+ 𝑝.
Then J⟨𝜀⟩⟨𝛿⟩⊤KS′ = JΔKS . Fokkink et al. (2019) define a unary diverges-
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134 And not just unbounded attack strategies as
we support them now.

while operator Δ𝜑 to characterize divergence-preserving branching bisim-
ilarity; this operator is then naturally expressed as branching conjunction
⟨𝜀⟩ ⋀{(𝛿)⊤, 𝜑}.

For infinite systems, divergence is more tricky. Just like infinite traces, it
depends on the possibility of characterizing infinite-duration attacks.134 On
the game level, for infinite plays to be winnable by the attacker, the game
must have a parity-game winning condition: The attacker wins a subgame
about divergence-distinction if they can make infinitely much 𝜏 -progress, but
the defender cannot. Such a richer game model is the route taken by Frutos
Escrig et al. (2017) to characterize various divergence-aware bisimilarities.

Behavioral congruences. Famously, many of the unstable weak equiva-
lences need to be refined in order to be congruences for CCS with choice
“+” (cf. Gazda et al., 2020; Sangiorgi, 2012). For instance, rooted weak bisim-
ulation congruence is achieved by allowing an ⟨𝜀⟩⟨𝜏⟩...-observation at the
outermost level of the HML characterization. Otherwise, weak bisimulation
formulas have no ⟨𝜏⟩-parts (see Figure 6.7).

This thesis is not going deeper into congruences. But let us note that,
clearly, the weak spectroscopy game could be extended by some prefix to en-
able such special observations for the attacker at the beginning if rootedness
is desired.

Coupled simulation. As mentioned in Section 6.4, we have glimpsed over
coupled similarity. It can be thought of as the syntactic combination of weak
similarity and contrasimilarity in the sense that each weak conjunction must
either contain purely positive or purely negative conjuncts, as outlined in
Bisping & Montanari (2024). This possibility does not align nicely with our
game formulation because it means that the attacker has to dedicate a con-
junction to positivity or negativity before entering, and not make up their
mind on the fly whether 𝑞 ∈ 𝑄 are addressed positively or negatively. If de-
sired, this could be treated by a new dimension in modal conjunctions and
game positions. Who urgently needs to compute coupled similarity relations,
may otherwise fall back to the coupled simulation game by Bisping & Nest-
mann (2019).

7.4 Discussion

This chapter has shown that the spectroscopy approach can readily be ex-
tended to handle weak behavioral equivalences as well.

Theweak spectrum, gamified. With the weak spectroscopy game, Bisping &
Jansen (2024) provide the first generalized game characterization of the silent-
step spectrum.

Previously, there have only been partial characterizations of individual
equivalences: Frutos Escrig et al. (2017) treat the diamond of weak, delay,
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135 Nice accounts of Nestmann’s search can be
found in Barwell et al. (2022) and in the histor-
ical remarks of Bisping et al. (2020).

𝜂 and branching bisimilarity. Bisping et al. (2020) and Bisping & Monta-
nari (2021, 2024) cover the area of coupled notions and contrasimilarity. Tan
(2002b) describes subset-construction variants of the bisimulation game for
weak trace equivalence and stable failure equivalence. With the weak spec-
troscopy game, we have moved beyond such individual equivalence games in
order to achieve genericity, covering both linear-time and branching-time as
well as stable and unstable notions.

In principle, this chapter only executes Idea 3 to translate modal construc-
tions to game moves appearing in HMLSRBB, which follows Idea 10. The im-
portant trick is to weaken the attacker according to Idea 11, but this departs
from prior approaches in weakened games and involves many technicalities.
Therefore, it is relieving to have the Isabelle formalization of Section 7.1.3 by
Barthel et al. (2025) to verify the construction.

Analyzing systems. The mini case studies of Section 7.2 show how the spec-
troscopy automates away the tedious kind of work of finding out the precise
relationship between transformed processes that went, for instance, into Bell
(2013). Similar searches for weak bisimilarities have happened around Par-
row & Sjödin (1992) and Nestmann & Pierce (2000), where coupled similarity
turned out to be the most fitting for encodings between models of differing
synchronicity.135

Concise distinguishing formulas can be interesting diagnostic information
to comparemodels. LikeMartens &Groote (2024), we findminimal-depth dis-
tinguishing formulas for branching bisimilarity without the need for a special
until operator, but we solve the problem for all weak notions at once. Horne
et al. (2023) report how inequivalence with respect to more distinctive modal
logics can reveal privacy vulnerabilities in ePassports, which have been over-
looked in a purely trace-based view. For a full understanding of a system’s
relationship to its specification, it is often helpful to pinpoint exactly how
difficult it would be for an attacker to tell the two apart.

To be continued. Some applications would demand more specialized modal
logics. As outlined in Section 7.3.3, matching adaptions in game and semantic
model are usually straightforward thanks to the clear connection of produc-
tions in the modal grammar and mechanics in the spectroscopy game.

But we have assembled enough theory to perform generalized equivalence
checking on commonmodels of concurrent systems. Time for Part IV to move
beyond theory! In the next chapter, we will return to the initial Example 1.1 of
Peterson’s mutex and explain how the prototype implementation of the weak
spectroscopy algorithm handles it.
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Part IV

… and Beyond





8 Implementations

Related publications. Conference artifacts of
equiv.io (reviewed by the artifact evaluation
committees of TACAS’21 and CAV’23) are
archived as Linear-time–branching-time
spectroscope (Bisping, 2021, 2023a). Some
paragraphs of discussion in this chapter have
already appeared in Bisping et al. (2022) and
Bisping (2023b).

All the nice theory of preceding chapters also works in practice. This chapter
revisits the core parts of the thesis by discussing how they tie together in a
tool implementation.

The tool, equiv.io, will be presented in Section 8.1. We demonstrate its
use through the Peterson’s mutex example. Section 8.2 shows that the game
approach lends itself tomany things: To explain equivalence notions in a com-
puter game, to extend existing tools, and to parallelize equivalence checking
through GPUs. In Section 8.3, we compare our implementations to similar
tools in the lineage of the “Concurrency Workbench.”

8.1 Prototype: equiv.io

The “Linear-time–branching-time spectroscope” at equiv.io is a small web tool
to check equivalence and preorder relations on CCS processes. Figure 8.1
shows a screenshot. In this section, we will discuss its usage (Section 8.1.1),
apply it to the Peterson example (Section 8.1.2), examine the tool structure
(Section 8.1.3), and benchmark its backend (Section 8.1.4).

Figure 8.1: Screenshot of equiv.io.

https://equiv.io
https://equiv.io
https://equiv.io
https://equiv.io
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8.1.1 Usage

The standard workflow of equiv.io is to specify processes in CCS and then
compare themwith respect to equivalence spectra. This is mainly achieved by
writing text into the source editor on the left. The specific order of definitions,
queries, and declarations in the source generally makes no difference.

Process syntax. CCS processes are written according to the grammar in Def-
inition 2.2, with the concrete syntax for subterms following Table 8.1.

Table 8.1: Concrete ASCII syntax for CCS terms

Construct Tool syntax CCS
Input prefix a.P a.𝑃
Output prefix a!P a.𝑃
Internal action tau.P 𝜏 .𝑃
Null process 0 0
Recursion P_Name PName
Choice P1 + P2 𝑃1 + 𝑃2
Parallel P1 | P2 𝑃1 ∣ 𝑃2
Restriction P \ {a1, a2} 𝑃 ∖ {a1, a2}

Literals for actions and process names combine Latin letters, numbers, and
underscores in the usual way.

Top-level process definitions are written X = P, expressing that V(X) ≔ 𝑃
in the semantics (Definition 2.3). The right-hand pane shows the resulting
transition system and output (cf. Figure 8.1).

The syntax tree can be clarified by parentheses “(...)”. Otherwise, the
parser reads prefix “a._” with highest operator precedence, then restriction
“_ \ {_}”, then choice “+” and parallel “|” at equal level. In case of ambiguity,
it assumes parenthesization from the right.

Equivalence queries. Queries for the behavioral equivalences between states
are formulated in the source editor as well and are started by clicking on the
arrows that pop up in the gutter. Output will appear right below the query in
the editor. The standard queries are:

• @compare P1, P2 – Perform a spectroscopy on P1 and P2with respect to
the strong spectrum using the game of Chapter 5. The output will have
four items, relative to the strong spectrum.

1. The strongest preorders to relate P1 to P2;
2. Cheapest formulas to distinguish P1 from P2 (and the smallest ob-

servation language they are part of);
3. The list of finest equivalences to equate P1 and P2.
4. A visualization of the result on the whole spectrum. Moreover,

there will be a link to a https://edotor.net/-visualization of the

https://equiv.io
https://edotor.net/
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game graph used to obtain the result. The naming of notions in
the output follows Table 8.2.

• @compareSilent P1, P2 – Perform a spectroscopy on P1 and P2 with
respect to the weak spectrum, treating silent steps along the lines of
Chapter 7. The output is analogous to @compare.

• @check equivalence-name, P1, P2 – Checks for (mutual) preordering
between P1 and P2with respect to individual notion equivalence-name.
The name of the notion to be checked must be one of the ones in Ta-
ble 8.2.

Interacting with the output. Each output item can be clicked. The transition
system view then displays the preorders, equivalences, and distinctions that
have been found between states.

States in the transition system may be dragged to change their position.
The layout information is persisted in the source, as described in the next list.

Layout and preprocessing. The source can also contain layout information
and prescribe some preprocessing for processes.

• P(main) – Highlight process P in the transition system and prune other
sub-processes (unless they are reached from P). Multiple processes may
be declared to be main.

Table 8.2: Names of supported notions in equiv.io.

Strong variant Weak variants Stable / stability-respecting variants
enabledness weak-enabledness
trace weak-trace
failure weak-failure stable-failure
revivals stable-revivals
readiness weak-readiness stable-readiness
failure-trace stable-failure-trace
ready-trace stable-ready-trace
impossible-future weak-impossible-future s-impossible-future
possible-future weak-possible-future
simulation weak-simulation stable-simulation
ready-simulation weak-ready-simulation s-ready-simulation
2-nested-
simulation

2-nested-weak-simulation

bisimulation contrasimulation
weak-bisimulation
delay-bisimulation
eta-bisimulation
branching-bisimulation

stable-bisimulation
sr-delay-bisimulation
sr-branching-bisimulation

https://equiv.io


152 Chapter 8. Implementations

• P(x=100, y=100) – Annotate process P to be displayed at certain coor-
dinates.

• "0"(x=100, y=200) – The annotations may also refer to subprocesses
The CCS expressions are wrapped in "...". They must be verbatim the
string representation the tool uses for the normalized process.

• @preprocessing method1, method2... – Apply preprocessing to the
transition system after translation of the CCS term (that is, before pre-
sentation and queries happen). This will affect the whole transition
system, but tries to preserve processes that have been marked as main.
The order of processing steps can make a difference. The supported
methods are:

– weakness_saturated – Replace the transition relation with weak
transitions. In effect, there will be a transition whenever the orig-
inal system allows ↠ (𝛼)−−→↠.

– tauloop_compressed_marked – Collapse states on 𝜏 -loops and
mark them with a 𝛿. (This follows the thought of how to make
equivalence queries divergence-respecting from Section 7.3.3.)

– bisim_minimized – Merge states that are strongly bisimilar.
– srbb_minimized – Merge states that are stability-respecting

branching-bisimilar (enforces tau-loops precisely on divergent
states).

• @comment "My comment" – Any @something-tag without features can
serve to add comments in the model.

8.1.2 Application to Peterson’s Mutual Exclusion Protocol

Let us go through the whole process of using the tool once to tackle the ex-
ample of Peterson’s mutual exclusion protocol, which has already been pre-
viewed in Example 1.1. Thereby, we settle the question with respect to which
equivalences the protocol correctly implements the specification of mutual
exclusion. We follow the presentation of how to model this protocol in CCS
from Aceto et al. (2007, Chapter 7), with action names chosen to align with
van Glabbeek (2023).

We specify mutual exclusion as a system Mx of two alternating users A and
B entering their critical section ecA / ecB and leaving lcA / lcB before the other
may enter. Aceto et al. (2007, Equation 7.1) suggest the following specification
in CCS:

Interactive model on equiv.io. Mx = ecA.lcA.Mx + ecB.lcB.Mx

Can one come up with a process where two subprocesses run a protocol such
that the overall system is somewhat equivalent to this specification? Peter-
son (1981) proposes a protocol that can be summarized by the following pseu-
docode:

https://equiv.io/#code=
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ready = {"A": false, "B": false}

turn = "A"

def process(ownId, otherId):

while true: # PC = 1

ready[ownId] = true

turn = otherId

do # wait... # PC = 2

until (ready[otherId] == false || turn == ownId)

print "enter critical #{ownId}" # PC = 3

# critical section goes here.

print "leave critical #{ownId}"

ready[ownId] = false

process("A", otherId = "B") || process("B", otherId = "A")

The two processes share three variables: ready["A"] expresses whether pro-
cess A is ready to enter its critical section; ready["B"] the same for B. In turn,
both processes try to write whose turn it is to enter, A or B. Assuming suffi-
ciently consistent memory, the protocol works because each process will only
enter the critical section if no other process is waiting or if it has been yielded
the turn (by the other process). The critical scenario of both processes enter-
ing symmetrically is resolved because the race condition on the turn-write
will flip a coin in such situations.

To express the shared-memory protocol in the message-passing paradigm
of CCS, we must model the storage as processes that run in parallel with the
main model. We do this as Aceto et al. (2007): In the following the process
ReadyAf corresponds to ready["A"] = false, and ReadyAt to ready["A"] =

true. The current state can be either read (readyAf / readyAt) or written
(setReadyAf / setReadyAt).

ReadyAf = readyAf!ReadyAf + setReadyAf.ReadyAf + setReadyAt.ReadyAt
ReadyAt = readyAt!ReadyAt + setReadyAf.ReadyAf + setReadyAt.ReadyAt

ReadyBf = readyBf!ReadyBf + setReadyBf.ReadyBf + setReadyBt.ReadyBt
ReadyBt = readyBt!ReadyBt + setReadyBf.ReadyBf + setReadyBt.ReadyBt

TurnA = turnA!TurnA + setTurnA.TurnA + setTurnB.TurnB
TurnB = turnB!TurnB + setTurnA.TurnA + setTurnB.TurnB

Each main process iterates through the phases 1, 2, and 3, corresponding to
PC = 1,2,3 in above pseudocode. In 1, they set their ready and yield the turn;
in 2, they wait until they hear that the other’s ready is false or that it is their
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turn; in 3, they enter and leave their critical section, unset their ready, and
return to phase 1.

A1 = setReadyAt!setTurnB!A2
A2 = readyBf.A3 + turnA.A3
A3 = ecA.lcA.setReadyAf!A1

B1 = setReadyBt!setTurnA!B2
B2 = readyAf.B3 + turnB.B3
B3 = ecB.lcB.setReadyBf!B1

Peterson’s protocol is the parallel composition of A1, B1 and the storage, re-
stricting communication with the memory:

Pe = (A1 | B1 | TurnA | ReadyAf | ReadyBf)
\ {readyAf, readyAt, setReadyAf, setReadyAt, readyBf, readyBt,

setReadyBf, setReadyBt, turnA, turnB, setTurnA, setTurnB}

If you enter above listings, you will notice that the transition system view
is cluttered by cycles for the subprocesses. These can be removed from the
system output by declaring Pe and Mx as the main processes:

Pe(main, x=900, y=340)
Mx(main, x=120, y=220)

To further clarify the transition graph, we can minimize it with respect to
stability-respecting branching bisimilarity, resulting in the transition system
of Figure 1.2:

@preprocessing srbb_minimized

We can now verify that Pe and Mx allow for the same weak traces, which,
for instance, rules out bugs where both enter, ecA and ecB, after each other
without the other leaving.

@check weak-trace, Pe, Mx

> "States are equivalent."

But the processes are not weakly bisimilar, as tested by:

@check weak-bisimulation, Pe, Mx

> "States are not preordered (nor equivalent)"

To get the full picture, we run a silent-step spectroscopy:
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@compareSilent Pe, Mx

This yields output (also to be seen in Figure 8.1):

• Preordered by:

eta-simulation

stable-simulation

• Left-right-distinguished by:

⟨ϵ⟩⋀{¬⟨ϵ⟩⟨ecA⟩⊤,¬⟨τ⟩⊤} (stable-failure)

⟨ϵ⟩⋀{¬⟨ϵ⟩⟨ecB⟩⊤} (weak-failure)

• Equated by:

weak-simulation

The maintained notions can also be marked in an overlay on the weak spec-
trum, as shown in Figure 1.3.

The weak failure ⟨ϵ⟩⋀{¬⟨ϵ⟩⟨ecB⟩⊤} can be understood to point out that Pe
exceeds Mx in that it can reach a state without visible activity where ecB is
impossible.

… thinking about it, this behavior might be okay for a mutual
exclusion protocol, might it not? Why should the outside observer need to be
notified about the participating processes making up their minds? So, maybe,
our specification Mx is too strict. Let us try another specification of mutual
exclusion where we leave it as an iterated internal choice of the system which
participant may enter the critical section:

@comment "Internal-choice mutex"

MxIC(main, x=120, y=0)
MxIC = tau.ecA.lcA.MxIC + tau.ecB.lcB.MxIC

@compareSilent Pe, MxIC

Pe aligns much better to the MxIC-specification! “@compareSilent Pe, MxIC”
returns:

• Preordered by:

eta-simulation

weak-ready-simulation

s-ready-simulation

• Left-right-distinguished by:

⟨ϵ⟩⟨ecA⟩⟨ϵ⟩⋀{¬⟨ϵ⟩⟨lcA⟩⟨ϵ⟩⟨ecA⟩⊤,¬⟨τ⟩⊤} (s-impossible-future)

⟨ϵ⟩⟨ecB⟩⟨ϵ⟩⟨lcB⟩⋀{¬⟨ϵ⟩⟨ecB⟩⊤} (delay-bisimulation)

⟨ϵ⟩⟨ecA⟩⟨ϵ⟩⋀{¬⟨ϵ⟩⟨lcA⟩⟨ϵ⟩⟨ecA⟩⊤} (weak-impossible-future)

• Equated by:

stable-readiness
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Figure 8.2: Spectrum output in equiv.io.

eta-simulation

weak-ready-simulation

The output means that implementation Pe and internal choice specification
MxIC cannot be distinguished from each other by a readiness observation (sub-
suming failures), neither in stable nor weak semantics. Interestingly, in weak
(that is, unstable) semantics the indistinguishability goes even further, up to
weak ready simulation.

The tool’s visual output of the spectrum for Pe vs. MxIC (Figure 8.2) also
sports a bigger blue region of equivalence than with the original specification
(cf. Figure 1.3).

The main aspect that creates the differences between Pe and MxIC is that
the implementation can decide that B will be the next entering the critical
section next, even before A has left. In above output, this is mirrored by the
impossible-future formula ⟨ϵ⟩⟨ecA⟩⟨ϵ⟩⋀{¬⟨ϵ⟩⟨lcA⟩⟨ϵ⟩⟨ecA⟩⊤}.

We can find this scenario already in the pseudocode. It happens when
both processes are in PC = 2 and B has set turn = A. Then, A may enter its
critical section but has to yield to B before it can re-enter. So, this constitutes
a proper difference between Peterson’s protocol and a pure iterated internal
choice. But then again, one might say that it is fair of the process going first
to leave the next round to the other waiting participant. In the pure CCS view,

https://equiv.io
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Source

CCS system
ccs.Syntax

Transition system
WeakTransitionSystem

Game + winning budgets
StrongSpectroscopyGame
or WeakSpectroscopyGame

Result
SpectroscopyResult

Finest preorders
ObservationNotion[]

Distinguishing formulas
HML.Formula[]

Price okay?
/

Distinguishing?
/

Visualization

SpectroscopyFramework

ccs.Parser

ccs.Interpreter

EnergyGame.populateGame

spectrum.
getStrongest

buildHMLWitness hml.Interpreter

spectrum.
classifyFormula

Figure 8.3: Data transformation flow in equiv.io

136 There is a minor semantical difference: The
equiv.io interpreter flattens process restriction
in recursion. This leads to processes like P =
a.P \ {b} having a finite process graph instead
of an infinite one (cf. Aceto et al., 2007, Exercise
2.9).

however, we cannot adequately treat more general fairness considerations for
Peterson’s protocol, as van Glabbeek (2023) explicates.

This is what the spectroscopy has taught us: Peterson’s mutual exclusion
protocol is more similar to repeated internal choice (MxIC) than to the specifi-
cation Mx from Aceto et al. (2007). However, the two are not bisimilar in any
sense, since, in Pe, local progress from one iteration may influence the next.

8.1.3 Program Structure

The core of equiv.io aligns quite closely to the spectroscopy framework out-
lined in Figure 5.1. In this subsection, we take a quick look at how implemen-
tation and definitions in this thesis correlate.

Figure 8.3 shows core transformations that happen in the process of ana-
lyzing the equivalences for a pair of processes:

1. Parsing. ccs.Parser transforms source into an abstract syntax tree
object ccs.Syntax.Definition, along the lines of Definition 2.2 with
the syntax of Section 8.1.1.

2. Interpretation. ccs.Interpreter applies the operational semantics of
Definition 2.3136 to construct a ts.WeakTransitionSystem, which sup-
ports silent-step transitions of Section 6.1.1. Also the preprocessing of
Section 8.1.1 is applied, the soundness of which follows Lemma 5.4 (and
its analogues for the weak spectrum).

3. Spectroscopy. The trait spectroscopy.SpectroscopyFramework
orchestrates the spectroscopy pipeline. Its abstract parts are instan-
tiated by spectroscopy.StrongSpectroscopy and spectroscopy.
WeakSpectroscopy for the respective spectroscopy variants of Chap-
ter 5 and Chapter 7. In particular, they facilitate the following steps in
SpectroscopyFramework.decideAll:

https://equiv.io
https://equiv.io
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/ccs/Parser.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/ccs/Interpreter.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/ts/WeakTransitionSystem.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/SpectroscopyFramework.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/StrongSpectroscopy.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/WeakSpectroscopy.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/WeakSpectroscopy.scala
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1. The spectroscopy defines a spectroscopy game (e.g. spectroscopy.
StrongSpectroscopyGame). The game must be a game.
EnergyGame, inheriting a decision procedure along the lines of
Algorithm 4.1 from trait game.GameLazyDecision. This com-
putation is invoked together with the game graph construction
through populateGame.

2. The spectroscopy provides an hml.Spectrum object which
is used to interpret the game result in a hierarchy of hml.
ObservationNotions to pick the strongest preorders to relate
compared processes. The specifics of Chapter 3 and Chapter 6
are implemented by hml.StrongObservationNotion and hml.
WeakObservationNotion.

3. The spectroscopy implements a buildHMLWitness-method, con-
structing strategy formulas from attacker-won budgets of Strat△
in Definition 5.2 and Strat∇ in Definition 7.2.

4. Validation (optional). If the user demands, the procedure Spec-

troscopyFramework.decideAll continues to construct cheapest
distinguishing formulas for the query with buildHMLWitness.

• hml.Interpreter checks that each formula is indeed true for one
process and false for the other, applying the semantic HML game
of Section 2.4.2. If the formula is not distinguishing, an exception
is thrown.

• classifyFormula on the specific Spectrum object determines the
expressiveness prices of formulas (implemented as in Remark 3.1
and Definition 6.11 by the formulaObsNotion functions in hml.
StrongObservationNotion / hml.WeakObservationNotion). If
the formula price exceeds the budget predicted by the game or is
unexpectedly cheap, this constitutes an error.

Error reports would point to incorrectness of the specific spectroscopy,
not to user mistakes. Thus, the validation does not affect the core deci-
sion procedure, but increases confidence that a specific output is sound.
If no formula construction is requested, the implementation in
SpectroscopyFramework.decideAll works on flattened energies
(Definition 4.13), generally leading to better performance.

5. Presentation. SpectroscopyFramework.decideAll collects the finest
preorders and coarsest distinctions, optionally together with their wit-
ness formulas in a Spectroscopy.Result object from spectroscopy.
Spectroscopy. This object helps front-end layers of the tool interpret
the output as spectra, equivalences, and distinguishing formulas.

Another trait spectroscopy.EquivalenceChecking follows the second
path of Figure 5.1 to decide individual equivalences through reachability

https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/StrongSpectroscopyGame.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/StrongSpectroscopyGame.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/game/EnergyGame.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/game/EnergyGame.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/game/GameLazyDecision.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/Spectrum.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/ObservationNotion.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/ObservationNotion.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/StrongObservationNotion.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/WeakObservationNotion.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/WeakObservationNotion.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/Interpreter.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/StrongObservationNotion.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/StrongObservationNotion.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/hml/WeakObservationNotion.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/Spectroscopy.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/Spectroscopy.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/EquivalenceChecking.scala
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137 For reference, Cleaveland & Sims (1996)
report 18,000 LOC for the NSCU Concur-
rencyWorkbench in Standard ML. Performance-
centric C++ code bases likemCRL2 (Bunte et al.,
2019; Groote & Mousavi, 2014) are another or-
der of magnitude bigger.

138 The benchmarking is in the class tool.
benchmark.VeryLargeTransitionSystems. It
can be started via sbt "shared/run benchmark
--strong-game --reduced-sizes --include-
hard".

139 Average of mid three runs out of five, in
the Java Virtual Machine with 8 GB heap space,
single-threaded on Intel® Core™ Ultra 7 155H.

games. We will not go into detail here. The core feature is to derive
a game game.MaterializedEnergyGame as in Definition 4.4. game.
WinningRegionComputation determines its winner according to Algo-
rithm 2.1.

Besides the core-flow, there are some small additional diagnostic fea-
tures. For instance, spectroscopy.SpectroscopyFramework can save the
spectroscopy game graph and formulas in Graphviz-format using game.
GameGraphVisualizer, comparable to Figure 4.7. The output of the same
mechanism for spectroscopy.EquivalenceChecking appears, for example,
in the derived trace game of Figure 5.7.
Remark 8.1 (Line counting). When following the links to source listings above,
you might notice that most aspects only take a few hundred lines of code.
Depending on how one counts, a total of 2000–3000 lines fit the two spectro-
scopies, preorder checking for all the notions, game algorithms, generation
and validation of HML formulas, and presentation mechanisms.

As far as code bases go, that size is extremely compact.137 In part, this is
enabled by Scala’s conciseness. But the heavy lifting in making the imple-
mentation so light-weight is achieved by the energy-game abstraction.
Remark 8.2 (Tests). The codebase of the backend of equiv.io includes test
suites for strong and weak spectroscopy. These ensure that the algorithms
(with and without optimizations) return the expected results for the finitary
separating examples of strong and weak spectrum (van Glabbeek, 1990, 1993).
This provides some confidence that not too much is going astray on the way
between our correctness theorems and optimized implementation.

8.1.4 Benchmarks

Our algorithm and equiv.io are aimed at small transition systems that “fit onto
one screen.” But still, the backend can analyze the equivalence structure of
moderately-sized real-world transition systems. In this subsection, we exam-
ine its performance on the VLTS (“very large transition systems”) benchmark
suite Garavel (2017) and on our recurring Peterson example.

Clever strong spectroscopy. Table 8.3 reports the results of running the
backend with the clever strong spectroscopy game G▴. This mostly matches
the results already reported in Bisping (2023b).138

The benchmark uses the VLTS examples of up to 25,000 states and the
Peterson example. The table lists the P-sizes of the input transition systems
and of their strong bisimilarity quotient system P/∼B (Definition 2.10).

The test suite constructs the game graph on the quotient system, start-
ing at all positions that compare pairs of enabledness-equivalent states. The

▴-column reports the size of the discovered game graph in terms of moves.
The time-column lists execution times of the spectroscopy procedure in sec-
onds.139

https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/tool/benchmark/VeryLargeTransitionSystems.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/tool/benchmark/VeryLargeTransitionSystems.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/game/MaterializedEnergyGame.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/game/WinningRegionComputation.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/game/WinningRegionComputation.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/SpectroscopyFramework.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/game/GameGraphVisualizer.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/game/GameGraphVisualizer.scala
https://github.com/benkeks/equivalence-fiddle/tree/main/shared/src/main/scala-2.12/io/equiv/eqfiddle/spectroscopy/EquivalenceChecking.scala
https://equiv.io
https://equiv.io
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The last three columns list the output sizes of state spaces reduced with
respect to enabledness E, traces T, and simulation 1S.

From the output, we learn that the VLTS examples, in a way, lack diver-
sity: Bisimilarity B and trace equivalence T coincide on the systems (third and
penultimate column).

Concerning the algorithm itself, the experiments reveal that the compu-
tation time grows mostly linearly with the size of the game move graph. On
vasy_18_73, the implementation times out after 500 seconds.

Of those terminating, the heavily nondeterministic cwi_1_2 is the most
expensive example. Almost all of its transitions are labeled by i, standing for
internal activity 𝜏 in the VLTS suite. As many coarse notions must record the
nondeterministic options, this blow-up is to be expected. If we compare to the
best similarity algorithm by Ranzato & Tapparo (2010), they report their al-

Table 8.3: Runtime and results of strong spectroscopy on VLTS examples.

System P P/∼B ▴ time (s) P/∼E P/∼T P/∼1S

peterson 36 31 4,602 0.05 10 30 30
vasy_0_1 289 9 566 0.01 3 9 9
cwi_1_2 1,952 1,132 22,707,217 195.39 11 1,132 1,132
vasy_1_4 1,183 28 1,000 0.01 8 28 28
cwi_3_14 3,996 62 18,350 0.15 3 62 62
vasy_5_9 5,486 145 2,988 0.03 109 145 145
vasy_8_24 8,879 416 145,965 1.44 177 416 416
vasy_8_38 8,921 219 14,958 0.16 115 219 219
vasy_10_56 10,849 2,112 6,012,676 97.89 14 2,112 2,112
vasy_18_73 18,746 4,087 - - - - -
vasy_25_25 25,217 25,217 0 0.24 25,217 25,217 25,217

Table 8.4: Runtime and results of weak spectroscopy on VLTS examples.

System P P/∼BBsr ∇̂ time (s) P/∼WE P/∼WT P/∼1WS

peterson 36 21 3,579 0.10 5 16 16
vasy_0_1 289 9 2,958 0.07 3 9 9
cwi_1_2 1,952 67 22,944 0.40 19 67 67
vasy_1_4 1,183 4 0 0.00 4 4 4
cwi_3_14 3,996 2 0 0.00 2 2 2
vasy_5_9 5,486 112 2,723 0.06 91 112 112
vasy_8_24 8,879 170 10,983 0.12 115 169 169
vasy_8_38 8,921 193 32,598 0.35 104 193 193
vasy_10_56 10,849 2,112 - - - - -
vasy_18_73 18,746 2,326 - - - - -
vasy_25_25 25,217 25,217 0 0.32 25,217 25,217 25,217
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140 However, quotient systems need not be
minimal for simulation-like and trace-like no-
tions. For discussions on weak minimizations
of Peterson’s mutex, see Bouali (1992) and van
Glabbeek & Weijland (1996).

gorithm SA to tackle cwi_1_2 single-handedly. Like our implementation, the
prototype of SA of Ranzato & Tapparo (2010) ran out of memory while deter-
mining similarity for vasy_18_73. This is in spite of SA theoretically having
optimal complexity and similarity being less complex than trace equivalence,
which we need to cover (cf. Section 3.3.3). The benchmarks in Ranzato &
Tapparo (2010) failed at vasy_10_56, and vasy_25_25, which might be due to
2010’s tighter memory requirements (they used 2 GB of RAM) or the degree
to which bisimilarity and enabledness in the models is exploited.

Simplified weak spectroscopy. Table 8.4 lists analogous values for the weak
spectroscopy game G∇̂, in the simplified variant, but also containing revivals
moves of Section 7.3.2.

The algorithmic setup is slightly changed for the weak setting: We work
with the quotient system of stability-respecting branching bisimilarity and
start at weakly enabledness-equivalent pairs. The last three columns give the
output quotient sizes for weak enabledness WE, weak traces WT, and weak
simulation 1WS.

The peterson example, afterminimization, has exactly the 21 states shown
in Figure 1.2. Its weak similarity quotient is smaller (16 states, cf. last column),
which fits our observations that weak similarity equates more in this model
than bisimilarity-like notions do.140

In weak semantics, cwi_1_2 becomes easy, as its internal nondeterminism
is directly compressed away by the initial branching-bisimilarity minimiza-
tion.

Again, we see that branching bisimilarity and weak trace equivalence
mostly coincide on the VLTS examples. Only vasy_8_24 differs between 170
states in P/∼BBsr and 169 in P/∼WT.

The numbers align with the output of a different implementation in Bisp-
ing & Nestmann (2019), which is a good sign for the correctness of both pro-
grams. There, the same samples were analyzed with respect to coupled simi-
larity, a weak notion close to contrasimilarity and weak similarity. Interest-
ingly, the coupled simulation implementation in Bisping & Nestmann (2019)
takes minutes for vasy_25_25, constructing a game with 126,000 moves. The
trivial game of Table 8.4 suggests that this would not be necessary.

In summary, the equivalences of our spectra mostly coincide on the con-
sidered VLTS samples. This indicates that the examples are based around
models that avoid the expressive power of finer branching-time notions.

8.2 Student Implementations

There exist three other implementations of the equivalence spectroscopy algo-
rithm by students of mine. Each covers a different direction: In Section 8.2.1,
we discuss The Spectroscopy Invaders, a computer-game version, which has an
educational purpose. Section 8.2.2 presents an extension to an existing educa-
tional tool, the Concurrency Workbench Aalborg Edition. Section 8.2.3 closes
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Figure 8.4: Screenshot of browser game “The Spectroscopy Invaders.”

141 In the online version of this thesis, it is ac-
tually a screen capture by Trzeciakiewicz, illus-
trating negation moves in the game tutorial.

by reporting on gpuequiv, a performance-centric shader-based implementa-
tion using the modern WebGPU standard.

8.2.1 Computer Game: The Spectroscopy Invaders

Would it not be nice if one could play the spectroscopy game as a game?
Trzeciakiewicz (2021) develops the computer game “The Spectroscopy In-

vaders” where one plays the attacker in the spectroscopy game. You can enjoy
the game in the browser at https://concurrency-theory.org/ltbt-game/.

A play of the game corresponds to naming a universal attack strategy in
the strong spectroscopy game of Definition 5.1, or, equivalently, to construct-
ing a distinguishing formula. To reach maximal level scores, one has to play
out a minimal formula in the sense of our pricing. Under the hood, the Type-
Script implementation uses Bisping et al.’s (2022) algorithm to compute the
minimal budgets. The game does not present the costs of moves to the player,
but they matter for the scores received at the end of a level.

Figure 8.4 gives a screenshot of the first level of the “Failure” world.141 This
level corresponds to the classic Example 2.1 of P and Q if we match the orange
transitions to 𝜏 -steps, blue to a, and yellow to b. The metaphor on top of the
game mechanics is that the human-controlled hero (left) has to outmaneuver
a group of elves (right) that might split up on nondeterministic transitions.

From Example 5.3, we know that the failure ⟨𝜏⟩¬⟨a⟩ is a cheapest
distinction of the left state from the right in this system, translated as
⟨orange⟩¬⟨blue⟩. In the computer game, we would use this distinction as

https://concurrency-theory.org/ltbt-game/
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Figure 8.5: Second level of Simulation world.

follows: First click on the state behind the middle orange transition to observe
it. Then, click on the “negation” button to swap sides of hero and elve.
Defeat them by moving along the right blue edge.

The handling of conjunctions is a little more involved.
Figure 8.5 shows the second level of the “Simulation” world. In the
level, the player’s task is to distinguish white.(red + orange.orange) (left)
from white.(red + orange) + white.orange.orange (right). The current
game position occurs after the first white observation and corresponds
to [red + orange.orange, {red + orange, orange.orange}]a in the strong
spectroscopy game G△, as indicated by the hero figure on the left and the
two elves on the right.

The player can click the “conjunct” button , after which they have to
explain how to win [red + orange.orange, red + orange]∧

a and then [red +
orange.orange, orange.orange]∧

a. In the split state, the player can first click
through the yellow-arrow successor states on the left to point out that the
left elve cannot observe two yellow steps. Then, they also have to name how
to defeat the right elve, by taking the red transition. Together, this strategy
corresponds to the simulation formula ⋀{⟨yellow⟩⟨yellow⟩, ⟨red⟩}.

The game is single-player, also in a theoretical sense: There is no picking
of conjunction answers by the defender. Instead, the attacker has to name
attacks for every right-hand state. Due to nested conjunctions, the game po-
sitions thus actually are sets of [𝑝, 𝑄]a tuples.

Trzeciakiewicz (2021) limits the scope to (strong) trace, failure, possible-
future, simulation, and bisimulation equivalences, excluding notions like
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readiness, ready traces, and failure traces. The selection permits slightly sim-
pler game rules—in particular, without revival moves. This allows to nicely
showcase the core mechanics of Chapter 5 with a stricter correspondence to
productions in the original HML of Definition 2.11.

8.2.2 CAAL Extension

Would it not be nice if one could use the equivalence spectroscopy in existing
tools?

Ozegowski (2023) integrates the spectroscopy algorithm into CAAL,
the “Concurrency Workbench Aalborg Edition” by Andersen et al. (2015).
Straßnick & Ozegowski (2024) also add the weak spectroscopy game and
possibilities to play the spectroscopy game in the tool. Their extended version
of CAAL is live on https://equivio.github.io/CAAL/.

The original CAAL (on https://caal.cs.aau.dk/) covers the curriculum of
Reactive systems (Aceto et al., 2007), including CCS processes, HML formulas
and equivalence games.

Originally, CAAL only supports preorder/equivalence checking for six
standard notions, namely for simulation, bisimulation, and traces, in their
standard strong and weak variants. Only simulation and bisimulation can
be examined as games.

Straßnick and Ozegowski’s extended CAAL version supports 13 strong
and 21 weak notions. Each of the notions can be decided individually, or in
the context of a spectroscopy. For the strong notions, the game graph can be
explored interactively. Figure 8.6 shows the output of strong and weak spec-
troscopy on the classic Example 2.1, together with a generated distinguishing
failure formula in the HML dialect of CAAL.

For a usage guide, we refer to Straßnick & Ozegowski (2024).
At some points, Straßnick and Ozegowski’s fork unfortunately has to re-

main partial with respect to features. For instance, the extension does not
support distinguishing formulas for the weak spectroscopy because CAAL’s
HML dialect cannot easily be molded to support HMLSRBB.

Still, the project shows that the spectroscopy approach is sufficiently sim-
ple and versatile to allow dozens of equivalence checkers to be integrated into
existing tools within the limited scope of a student project.

8.2.3 GPU Implementation: gpuequiv

Would it not be nice if one could use modern hardware to perform spectro-
scopies as fast as possible?

Vogel (2024) implements the strong equivalence spectroscopy in gpuequiv
using shaders in the WebGPU Shading Language (Baker et al., 2025).

Technically, this is superior to the other three implementations of this
chapter, which can only exploit the single-threaded CPU model of JavaScript
when running in the browser.

https://equivio.github.io/CAAL/
https://caal.cs.aau.dk/
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Figure 8.6: Extended version of CAAL, performing a spectroscopy.

Historically, the WebGL standard for browser graphics processing has
lacked compute shaders. This has made it difficult to access the computational
power of graphics processing units from within web applications. Times are
changing with WebGPU/WGSL (Baker et al., 2025). Vogel (2024) makes this
technological progress available to the spectroscopy approach.

Big parts of the game graph construction and the game solving are quite
parallelizable. gpuequiv parallelizes the budget computation of Algorithm 4.1.
For instance, a whole batch of game positions on a todo-list can be processed
simultaneously. The details are explained by Vogel (2024).

gpuequiv’s control code surrounding the shader invocations is written in
Rust that can be compiled to native code and to WebAssembly. Therefore,
gpuequiv can be compiled for both kinds of targets: Quick equivalence check-
ing in the browser, and even quicker checking in a native application. Vogel
(2024) reports 10× speed-ups compared to Bisping (2023b). However, the fast
growth of game graphs remains a limiting factor as larger examples run into
the size boundary of buffers to upload gamemoves. For the system vasy_18_-

73, Vogel (2024) also fails to complete the spectroscopy (like our experience
in Section 8.1.4): It constructs a game graph of 623,482,227 moves, but only
536,870,911 moves fit into the buffer with the employed data packing.

At the time of writing, another Bachelor project is underway to add a
frontend and support for the weak spectroscopy game to gpuequiv.
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142 Andersen, Hansen, et al. (2015, Section
3.3) also mention how to use their game back-
end to handle 2-nested simulation and ready-
traces. But this is neither elaborated upon nor
supported in the frontend.

8.3 Discussion

In this chapter, we have surveyed the four existing implementations of the
spectroscopy algorithm.

We focused on equiv.io, which closely aligns with this thesis. We have
seen how the tool easily answers questions such as “How equivalent is Peter-
son’s algorithm to the specification of mutual exclusion.” equiv.io can check
behavioral preorders and equivalences for more than 38 notions of strong and
weak spectrum. Due to the possibility tomark divergences, evenmore notions
are available via preprocessing.

Other tools. A recent survey by Garavel & Lang (2022) lists hundreds of tools
to check bisimilarity and related equivalences and preorders. Some of them
can justify their output with distinguishing formulas (or traces), similar to
our approach. Many specific tools address special equivalences, for instance
for open, timed, or probabilistic systems, which we do not support. On the
other hand, equiv.io might be the first tool to cover some of the more arcane
notions of the weak spectrum (van Glabbeek, 1993), such as 𝜂-similarity and
stable bisimilarity.

In Table 8.5, we compare the supported notions of equiv.io to four current
state-of-the-art tools. A tick stands for direct support, ( ) for support via
preprocessing.

• CAAL (Andersen, Andersen, et al., 2015), or the “Concurrency Work-
bench Aalborg Edition,” also works with CCS and has already been dis-
cussed in Section 8.2.2.142

• mCRL2 (Groote & Mousavi, 2014), built around an ACP/CCS-like mod-
elling language of the same name, supports a wide-range of notions
with highly efficient implementations and a strong focus on branching
bisimilarity. On the notions it supports, it will generally be much faster
than the spectroscopy game algorithm. The only notion that is exclu-
sively supported by mCRL2 is coupled similarity, implemented by Lê
(2020).

• CADP (Garavel et al., 2013) can check several notions on-the-fly, also in
a highly optimized fashion. Its models are usually expressed in LOTOS
or LNT, deriving from CSP. It includes the special notions of safety- and
𝜏∗.𝑎-equivalence, not present in van Glabbeek’s spectrum (1993).

• FDR4 (Gibson-Robinson et al., 2014) has “Failures Divergences Refine-
ment” in its name, but also supports different linear-time refinement
models for CSP. Branching-time notions are partially supported as min-
imizers.

Like the listed tools, equiv.io can be seen as following the tradition of the dis-
continued “ConcurrencyWorkbench[es]” (Cleaveland et al., 1990; Cleaveland
& Sims, 1996).

https://equiv.io
https://equiv.io
https://equiv.io
https://equiv.io
https://equiv.io
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Other avenues for implementation. The implementations of this chapter
realize Algorithm 4.1 quite directly to decide energy games. Among them,
the shader version of Section 8.2.3 adds the highest level of implementation
cleverness with respect to packing of data and parallelization of computation.
But so far, we are not using the full toolbox of the computer-aided-verification
community.

For instance, the upward-closed sets of winning budgets could be han-
dled more symbolically with the representation of Delzanno & Raskin (2000).

Table 8.5: Comparison of supported notions.

Equivalence / preorder equiv.io CAAL mCRL2 CADP FDR4
Strong / weak enabledness
Strong trace
Weak trace
Strong failure
Weak failure
Stable failure
Failure-divergence ( )
Strong / stable revivals
Strong / weak / stable readiness
Strong / stable failure-trace
Strong / stable ready-trace
Strong / stable impossible fut.
Weak impossible future
Strong / weak possible future
Strong simulation
Weak simulation
Stable simulation
𝜂-simulation
Safety / 𝜏∗.𝑎
Strong ready-simulation
Weak / stable ready-simulation
2-nested strong / weak sim.
Strong bisimulation ( )
Contrasim. / stable bisim.
Coupled simulation
Weak bisimulation ( )
Div.-pr. weak bisim. ( ) ( )
Delay bisimulation ( )
Stability-resp. delay bisim.
𝜂-bisimulation
Branching bisimulation
Stability-resp. branch. bisim.
Div.-pr. branching bisim. ( ) ( )
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This might slightly increase how many Pareto fronts can be kept in mem-
ory. But one can expect that its payoff would be meager, especially on the
small {0, 1, ∞}𝑑-lattices. Experiments by Vogel (2024) suggest that the Pareto
fronts usually stay sufficiently small that adding the implementation complex-
ity of Delzanno & Raskin (2000) seems uncalled for.

A big limiting factor of our implementations is the storage of the game
graph. To some extent, this can be battled by more symbolic representations
as binary-decision-diagrams. Bulychev (2011) and Wimmer (2011) follow this
route in quite versatile checkers.

A more general solution for the memory limitations would be to forget
parts that have been visited, and recompute them by-need. There are easy
ways to profit from the community’s advances in handling big spaces of pos-
sibilities. The most prominent would be to instantiate the game rules for a
transition system, and feed them into an SMT solver. Already Shukla et al.
(1996) suggest a comparable approach, viewing games as SAT problems. The
energy aspect should be perfectly expressible for SMT/SAT solvers in linear
integer arithmetic (cf. Chistikov, 2024).

Alternative paths to generalized checkers. In Section 2.5, we have al-
ready discussed the alternative paradigms of equivalence checking. The
equivalences-as-game-instances approach seems to be the most fruitful when
one wants to easily support a wide range of preorders and equivalences
in a tool. By “easy,” we mean: without the need to implement individual
algorithms for each of the notions. Tan (2002a) takes a similar game approach
for the Concurrency Workbench, as do Andersen, Hansen, et al. (2015) for
CAAL.

Another route to this goal of genericity might be the approach of
equivalences-as-formulas from Lange et al. (2014). The idea there is to use
a diadic higher-order 𝜇-calculus where one can talk about relations between
states. Thereby, the rules of how to preorder states can be expressed as
formulas. One only needs to implement the model-checking for formulas
once, and new notions could be added by only adding new formulas. Stöcker
(2024) implements this idea successfully. But the data suggests that 20 states
already demand several seconds in this approach for some equivalences.

The third path to genericity is through equivalences-as-functors, to enable
coalgebraic partition-refinement algorithms from category theory. We already
hinted to this in Section 2.5. Deifel et al. (2019) follow this route in their
tool CoPaR (short for “Coalgebraic Partition Refiner”). This way, the sup-
port of new equivalences boils down to a few lines of defining new functors.
The big advantage is that extensions—for instance, to quantitative behavioral
distances—can also be achieved this way. The coalgebraic approach is re-
lated to the game approach and, too, can derive distinguishing formulas, as
seen for instance in the tool T-BEG (König et al., 2020). However, encoding
simulation-like preorders in category theory seems to be non-trivial if one
compares the machinery of Ranzato & Tapparo (2010) to the ease of just leav-
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ing out swap-moves in the bisimulation game. It is difficult to say whether
it is conceptional boundaries or the coating in category-theory parlance that
has hindered a wider adoption in tools.

A light-weight variant of the functor-approach is offered by equivalences-
as-signatures. Tools like Sigref (Wimmer et al., 2006) support a broad range
of bisimulation-like equivalences. The specifics of individual equivalences are
expressed as signatures that prescribe how to refine equivalence classes in an
iterative partition-refinement. Signature Refinement can easily be boosted by
parallelization or symbolic BDD-encodings.

Of course, all these theoretical approaches are linked on some basic level,
namely through the Hennessy–Milner theorem (Theorem 2.1). We elaborate
on this in the conclusion.
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9 Conclusion

The main contribution of this thesis has been to solve Problem 1, the spec-
troscopy problem, deciding all behavioral preorders and equivalences of strong
and weak spectrum, in one go. For this objective, we have provided general-
ized game characterizations for both spectra. To turn these into decision pro-
cedures, we have developed a theory of Galois energy games. Thanks to the
decision procedures, we can offer tool support for equivalence spectroscopies.
So, indeed, there is such a thing as “linear-time–branching-time spectroscopy”
(Idea 1).

The big picture. Figure 9.1 shows the steps our theory has taken:

• We have started at the level of individual equivalences by revisiting the
classical Hennessy–Milner theorem on the dualism of modal distin-
guishability and behavioral relatability for bisimilarity.

• Chapter 2 has revealed how relations and modal formulas in the
Hennessy–Milner theorem are just certificates for defender and
attacker strategies in the bisimulation reachability game (Idea 2).

• Chapter 3 has taken us to the level of spectra of equivalence, following
van Glabbeek’s approach of a hierarchy of Hennessy–Milner theorems
(Idea 3, Idea 4). The spectroscopy problem (Idea 5) emerges naturally.

• On this level, Chapter 4 has discovered that the bisimulation game just
is an instance of the bisimulation energy game, which characterizes a
small spectrum of P-easy strong equivalences (Idea 6). We can use it

Weak spectroscopy
Chapter 7

Strong spectroscopy
Chapter 5

Polynomial spectroscopy
Chapter 4

Bisimulation game
Chapter 2

Hennessy–Milner
theorem certificates of

strategies

(∞, ∞, ∞)-instance of
bisimulation energy game

3d-version

special case with
no internal 𝜏

Individual
equivalences
as baseline

Spectra
of equivalence

Chapter 3

Abstracting
silent steps
Chapter 6

Figure 9.1: Hierarchy of abstraction from Hennessy–Milner theorem and strong bisimilarity to weak spec-
troscopy. (Read arrows as “… can be understood as … of …”.)
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143 Lemke and Bisping are already writing a pa-
per on this.

in algorithms thanks to our decision procedure for such Galois energy
games (Idea 7).

• The bisimulation energy game then again is only a lower-dimensional
sibling of the strong spectroscopy game, which characterizes the full
strong spectrum in Chapter 5 by a subset construction (Idea 8). We
can still project it back all the way to the bisimulation game (Idea 9).

• With Chapter 6, we have entered the level of van Glabbeek’s (1993)
weak spectrum, where silent steps are abstracted, through a weakening
of HML (Idea 10).

• Chapter 7 has introduced the weak spectroscopy game, where the de-
fender profits from internal transitions (Idea 11). Where there is no
internal 𝜏−→-activity, the game could still serve as a strong spectroscopy
game.

In much the same way as we understand equivalences in a hierarchy by fold-
ing away dimensions of distinctions, this thesis itself has followed a hierarchy
of spectroscopies. Starting from the Hennessy–Milner theorem, we have un-
folded aspects, up to the weak spectroscopy. If one looks closely, we have
even started one level below: Remark 2.6 notices that the subtractive ≤-game
on natural numbers is an instance of the simulation game.

One could frame this journey along Plato’s allegory of the cave: The
Hennessy–Milner theorem is a shadow of the bisimulation game, which is a
shadow of an energy game, which is a shadow of the strong spectroscopy
game, which is a shadow of the weak spectroscopy game. With the tool
implementations of Chapter 8, we have returned from the abstract realm of
ideas back to a more material level.

But in reality, there is not one single ideal hierarchy of abstraction. Our
journey has crossed many routes by other researchers and could have taken
different paths. Many interesting ones have been the topic of “Discussion”
sections at the end of chapters. Let us close by looking at some ways one
could go from here.

Blank spots. There are some classical points to extend research around this
thesis. For instance:

• More formalization: Our Isabelle/HOL theory of the weak spectroscopy
strengthens many results of the thesis (thanks to the hierarchy of
shadows, Figure 9.1). But so far, it does not cover revivals and thus
failure-trace-like notions. The proofs in Bisping (2023c) give some
confidence that the construction is correct, but an Isabelle/HOL
formalization would be even nicer.

• More Galois energy games: There exist some interesting questions
around the theory of Galois energy games of Chapter 4 and their
generalizability to more game variants.143

• More tool support: Proliferation of spectroscopy features to more tools
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beyond Chapter 8 would be great. Our existing open source implemen-
tations can hopefully serve as good starting points.

More spectra. Concurrency theory knows other variants of linear-time–
branching-time spectra. For some, it might beworthwhile to ask spectroscopy
questions or to adapt our approach of generalized game characterizations.

• There are various quantitative notions, often understood in terms of be-
havioral distances. They could be included into our game model by al-
lowing the defender a certain amount of “cheating.” For instance, the
𝑄-sets in game positions could be fuzzy, and some budget could define
how unlikely positions the defender can pick.
The (strong) quantitative spectrum of Fahrenberg & Legay (2014) al-
ready is phrased in terms of a gamemodel. Combining it with our game
would likely demand deeper changes to our game mechanics, because
one has to remember traces (and not just current states) to compute the
resulting distances in full generality.
For Markovian models and probabilistic bisimilarities, there is recent
work of “spectro-fication” in Bian & Abate (2017), Baier et al. (2020),
and Spork et al. (2024), also extending to silent-step notions. So, this
might be the kind of quantitative equivalences where a connection to
our approach works best.
Timed equivalences would face conceptual boundaries to decision pro-
cedures on finite models: While bisimilarity is decidable, trace pre-
ordering is not (Čerāns, 1993).

• Barbed and other congruences on 𝜋-calculi rely on some system of con-
texts in which to place processes. Fournet & Gonthier (2005) present a
hierarchy for asynchronous name-passing calculi, on which one could
base a spectroscopy. Valmari (2020) even identifies a spectrum of all
linear-time congruences for a sensible set of operators.
Conceptually, it is clear that the selection of a distinguishing context
could also happen as an attacker move. In practice, it might be hard to
do this elegantly in a way where games remain finite for finite systems.
Likely, the most feasible route leads through conditional equivalences
(Hülsbusch et al., 2020).

• Some kinds of bisimilarity are based on special modalities. For instance,
there are forward/reverse bisimilarities (Bernardo&Esposito, 2023) that
add modalities to move backwards through the transition graph.
Many such modalities could be added as special moves to the game
graph. For modalities where satisfaction depends on infinite behavior,
the reachability game framework is not sufficiently expressive. An ex-
ample would be the divergence modalities mentioned in Section 7.3.3,
which require a parity-game winning condition.
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A modal-logical turn? This thesis has approached the rich body of work on
equivalence and refinement through one unified lens of finding differences in
behavior. These were expressed in modal logics (Idea 3 “Modal first!”). The
perks of modal characterizations have been a recurring topic of the thesis.

In recent years, there seems to be a shift towards the “modal first” ap-
proach. The shift is visible in Geuvers and Golov’s work on apartness (Geu-
vers, 2022; Geuvers & Golov, 2023), similarly in Ford et al. (2021) and Forster
et al. (2024) connecting graded modal logics and monads, in Wißmann et
al. (2021) strongly linking partition refinement and modal logic, as well as
in Beohar et al. (2023) using Galois connections to obtain Hennessy–Milner
theorems.

This thesis and its surrounding publications, too, participate in this move-
ment. However, we leave the stack of abstractions around coalgebras and
monads aside. One of the effects of this decision is that our framework can be
implemented by regular Bachelor students after one introductory course on
reactive systems.

The encyclopedic project. Concurrency theory as a field has entered a stage
where the initial explosion of questions and approaches has faded. A wave of
Festschriften has been appearing. As Garavel (2023) puts it:

Time has come for encyclopedic synthesis: reexamine / select /
simplify / sort

This thesis hopes to fit into this project with a “search engine” for equiva-
lences. It shows how to quickly survey spectra of equivalence and how the
approach can easily be implemented into tools to support generalized equiv-
alence checking of concurrent programs. While pioneers of the field are re-
tiring, parts of their wisdom thus can be materialized into new generations of
software.

After all, concurrent computation will remain relevant, and so will ques-
tions on the equivalence of concurrent programs.
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Notation

Basics
iff “if and only if”
|𝐴| Number of elements of 𝐴
id𝐴 Identity relation on 𝐴
2𝐴 Power set of 𝐴
𝐴∗, 𝐴𝜔, 𝐴∞ Language of finite / infinite / finite-or-infinite words over

alphabet 𝐴
R−1 Inverse relation of R
dom(𝑓) Domain of where function 𝑓 is defined, ⊥ counts as

undefined (first appearing in Definition 4.1)
ℕ, ℕ∞ Natural numbers / natural numbers extended by ∞ as top

element
≔ Definitional equality; in the context of CCS, X ≔ 𝑃 also

means V(X) ≔ 𝑃 (Definition 2.3); in the context of
algorithms, denotes variable assignment

Orders and Vectors
≤ less‑than‑or‑equal‑to, usually pointwise on vectors
Min(𝐴),
Max(𝐴)

Set of minimal / maximal elements in 𝐴 in the context of
a preorder ≤

⊔ / sup, ⊓ / inf Least upper bound / greatest lower bound in the context
of a lattice (Definition 3.4)

↑ 𝐴, ↓ 𝐴 Upward-closure / downward-closure of set 𝐴 in the
context of a preorder ≤ (Definition 3.4)

ê𝑘 Unit vector; component 𝑘 is 1, all others 0 (in the context
of some dimensionality 𝑑)

0 Vector of zeros (in the context of some dimensionality 𝑑);
not to be confused with 0 as terminated CCS process in
Definition 2.2
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Transition Systems
𝛼−→ Transition relation (in context of a transition system,

Definition 2.1), usually due to operational CCS semantics
(Definition 2.3); can also connect sets of states

𝛼↛ Absence of an 𝛼-transition
↠ Internal transition (Definition 6.1)
(𝛼)−−→ Soft transition (Definition 6.1)
𝑤⃗−→→ Weak 𝑤⃗-word step sequence (Definition 6.1)
Der(𝑝, 𝛼) 𝛼-derivatives of 𝑝 (Definition 2.1)
Ini(𝑝) Enabled actions of 𝑝 (Definition 2.1)
⟨𝛼⟩ Modality of observing an 𝛼-step (Definition 2.11)
(𝛼) Modality of observing a 𝜏 -soft 𝛼-step (Definition 6.1 and

6.5)
⟨𝜀⟩ Modality of allowing internal behavior (Definition 6.1

and 6.5)J𝜑K Set of states that fulfill 𝜑 (Definition 2.12)
S/∼ Quotient system on equivalence classes [⋅]∼

(Definition 2.10)

Behavioral Equivalences
⪯𝑁 , ∼𝑁 Behavioral preorder / equivalence with respect to notion

𝑁 (full names in Figure 3.8 and 6.5)
∼T, ∼S, ∼B Strong trace equivalence, similarity, bisimilarity

(Definition 2.5 and 2.7)
⪯O , ∼O Behavioral preorder / equivalence derived from a

sublogic O ⊆ HML (Definition 2.13)
O𝑁 Observation logic for a notion 𝑁 ∈ N in the context of a

spectrum (Definition 3.5)
O⌊B⌋ Bisimulation observation logic (Definition 2.16)
expr(𝜑) Syntactic expressiveness price of 𝜑 in the context of a

spectrum (Definition 3.6)
“𝜑 distin-
guishes”

Formula 𝜑 is true for state on left-hand side and not true
for state(s) on right-hand side (Definition 2.13 and 7.3)
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Games
Game move (Definition 2.17)

𝑢 Game move, labeled by an energy update (Definition 4.1)
GB Bisimulation game in the context of a transition system

(Definition 2.22)
GB Bisimulation energy game (Definition 4.8)
Wina, Wind Attacker / defender winning regions in the context of a

reachability game (Definition 2.20), or winning budgets in
an energy game (Definition 4.3)

Winmin
a (𝑔) Minimal attacker winning budgets for position 𝑔 in an

energy game (Definition 4.3), solution to Problem 2
upd, upd↺ Updates on energy games (Definition 4.1) and their

undo-function in the algorithm for Galois energy games
(Algorithm 4.1)

En Energy levels on declining energy games in the context of
a dimensionality 𝑑 (Definition 4.5)

upd, upd↺ Updates on declining energy games (Definition 4.5) and
their undo-version (Definition 4.12)

min𝐴 A special kind of update component in declining energy
games (Definition 4.5)

Spectroscopy
N𝑝,𝑞 Notions from N in the context of a spectrum preordering

states 𝑝 and 𝑞 (solution to Problem 1)
G△ Strong spectroscopy game, in the context of a transition

system (Definition 5.1)
G▴ Clever spectroscopy game (Definition 5.4)
G△𝑁 , G▴𝑁 Equivalence game for 𝑁 , derived from a spectroscopy

game (Definition 5.5)
G∇ Weak spectroscopy game, in the context of a transition

system with silent steps (Definition 7.1)
G∇̂ Simplified weak spectroscopy game (Figure 7.3)
StratB, Strat△,
Strat∇

Strategy formulas in the context of polynomial / strong /
weak spectroscopy (Definition 4.9, 5.2, 7.2)
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Complexity
O(𝑓) Set of functions that grow to infinity at most as quickly as

function 𝑓
P, NP, PSPACE Complexity classes of deterministic polynomial time /

nondeterministic polynomial time / polynomial space
complexity

Recurring Examples
P, Q Two systems of philosophers, differing in their

determinism (Example 2.1, 2.2, 2.3)
T Trolled philosophers with additional -deadlock

(Example 2.7)
Pe, Mx Implementation of Peterson’s mutual exclusion protocol

and its specification (Example 1.1), styled Pe and Mx for
their expression in the tool (Section 8.1.2)
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