References
Aceto, L., Fokkink, W., van Glabbeek, R., & Ingólfsdóttir, A.
(2004). Nested semantics over finite trees are equationally hard.
Information and Computation, 191(2), 203–232. https://doi.org/10.1016/j.ic.2004.02.001
Aceto, L., Ingólfsdóttir, A., Larsen, K. G., & Srba, J. (2007).
Reactive systems: Modelling, specification and verification
(pp. 142–158). Cambridge University Press. https://doi.org/10.1017/CBO9780511814105.008
Adler, R. (2022). Simulation fehlertoleranter
Konsensalgorithmen in Hash.ai [Bachelor's thesis]. Technische
Universität Berlin.
Allaire, J. J., Teague, C., Scheidegger, C., Xie, Y., Dervieux, C.,
& Woodhull, G. (2025). Quarto (Version 1.7)
[Computer software]. https://doi.org/10.5281/zenodo.5960048
Alshukairi, Z. (2022). Automatisierte Reduktion von
reaktiver zu starker Bisimilarität [Bachelor's
thesis]. Technische Universität Berlin.
Andersen, J. R., Andersen, N., Enevoldsen, S., Hansen, M. M., Larsen, K.
G., Olesen, S. R., Srba, J., & Wortmann, J. K. (2015). CAAL:
Concurrency workbench, aalborg edition. In M. Leucker, C. Rueda, &
F. D. Valencia (Eds.), Theoretical aspects of computing — ICTAC
2015 (pp. 573–582). Springer International Publishing. https://doi.org/10.1007/978-3-319-25150-9_33
Andersen, J. R., Hansen, M. M., & Andersen, N. (2015).
CAAL 2.0 – equivalences, preorders and games for CCS
and TCCS (Vol. DES104F15) [Student project supervised by Jiří Srba
and Kim Guldstrand Larsen]. Aalborg University. https://caal.cs.aau.dk/docs/CAAL2_EPG.pdf
Babai, L. (2016). Graph isomorphism in quasipolynomial time [extended
abstract]. STOC ’16, 684–697. https://doi.org/10.1145/2897518.2897542
Baier, C., D’Argenio, P. R., & Hermanns, H. (2020). On the
probabilistic bisimulation spectrum with silent moves. Acta
Informatica, 57(3), 465–512. https://doi.org/10.1007/s00236-020-00379-2
Baker, A., Derin, M. O., Neto, D., Maxfield, M. C., & Sinclair, D.
(Eds.). (2025). WebGPU shading language (Version
W3C Recommendation Draft). World Wide Web Consortium. https://www.w3.org/TR/WGSL/
Balcázar, J., Gabarro, J., & Santha, M. (1992). Deciding
bisimilarity is P-complete. Formal Aspects of
Computing, 4, 638–648. https://doi.org/10.1007/BF03180566
Barthel, L. A., Bisping, B., Hübner, L. M., Lemke, C., Mattes, K. P. P.,
& Mollenkopf, L. (2025). A weak spectroscopy game to
characterize behavioral equivalences [Isabelle/HOL formalization].
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy.
Barwell, A. D., Ferreira, F., & Yoshida, N. (2022).
CONCUR test-of-time award for the period 1994–97 interview
with Uwe Nestmann and Benjamin
C. Pierce. Journal of Logical and
Algebraic Methods in Programming, 125, 100744. https://doi.org/10.1016/j.jlamp.2021.100744
Basten, T. (1996). Branching bisimilarity is an equivalence indeed!
Information Processing Letters, 58(3), 141–147. https://doi.org/10.1016/0020-0190(96)00034-8
Bell, C. J. (2013). Certifiably sound parallelizing transformations. In
International conference on certified programs and proofs (pp.
227–242). Springer. https://doi.org/10.1007/978-3-319-03545-1_15
Bell, C. J. (2014). A proof theory for loop-parallelizing
transformations [PhD thesis, Princeton University]. https://people.csail.mit.edu/cj/thesis/thesis.pdf
Beohar, H., Gurke, S., König, B., & Messing, K. (2023). Hennessy-Milner Theorems via Galois
Connections. In B. Klin & E. Pimentel (Eds.), LIPIcs:
Vol. 252. 31st EACSL annual conference on computer science logic (CSL
2023) (pp. 12:1–12:18). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. https://doi.org/10.4230/LIPIcs.CSL.2023.12
Bernardo, M., & Esposito, A. (2023). Modal logic characterizations
of forward, reverse, and forward-reverse bisimilarities. EPTCS,
390, 67–81. https://doi.org/10.4204/eptcs.390.5
Bian, G., & Abate, A. (2017). On the relationship between
bisimulation and trace equivalence in an approximate probabilistic
context. In J. Esparza & A. S. Murawski (Eds.), Foundations of
software science and computation structures (pp. 321–337). Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54458-7_19
Bisping, B. (2018). Computing coupled similarity [Master’s
thesis, Technische Universität Berlin]. https://coupledsim.bbisping.de/bisping_computingCoupledSimilarity_thesis.pdf
Bisping, B. (2021). Linear-time–branching-time spectroscope:
TACAS 2021 edition [Artifact archived on Zenodo].
Zenodo. https://doi.org/10.5281/zenodo.4475878
Bisping, B. (2023a). Linear-time–branching-time spectroscope
v0.3.0 (Version v0.3.0) [Artifact archived on Zenodo]. Zenodo. https://doi.org/10.5281/zenodo.7870252
Bisping, B. (2023b). Process equivalence problems as energy games. In C.
Enea & A. Lal (Eds.), Computer aided verification (pp.
85–106). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-37706-8_5
Bisping, B. (2023c). Process equivalence problems as energy
games [Technical Report]. Technische Universität
Berlin. https://doi.org/10.48550/arXiv.2303.08904
Bisping, B., Brodmann, P.-D., Jungnickel, T., Rickmann, C., Seidler, H.,
Stüber, A., Wilhelm-Weidner, A., Peters, K., & Nestmann, U. (2016).
Mechanical verification of a constructive proof for FLP. In
J. C. Blanchette & S. Merz (Eds.), LNCS: Vol. 9807. Interactive
theorem proving (pp. 107–122). Springer International Publishing.
https://doi.org/10.1007/978-3-319-43144-4_7
Bisping, B., & Jansen, D. N. (2024). One energy game for the
spectrum between branching bisimilarity and weak trace semantics. In G.
Caltais & C. Di Giusto (Eds.), EPTCS: Vol. 412. Proceedings Combined 31st International Workshop
on expressiveness in concurrency and 21st
Workshop on structural operational semantics, Calgary,
Canada, 9th September 2024 (pp. 71–88). Open Publishing
Association. https://doi.org/10.4204/EPTCS.412.6
Bisping, B., & Jansen, D. N. (2025). Deciding all behavioral
equivalences at once II: The silent-step spectrum [Preprint]. https://code.keks.in/papers/2025/silent-step-spectroscopy_journal.pdf
Bisping, B., Jansen, D. N., & Nestmann, U. (2022). Deciding all
behavioral equivalences at once: A game for
linear-time–branching-time spectroscopy. Logical Methods in
Computer Science, 18(3). https://doi.org/10.46298/lmcs-18(3:19)2022
Bisping, B., & Montanari, L. (2021). A game characterization for
contrasimilarity. In O. Dardha & V. Castiglioni (Eds.), EPTCS:
Vol. 339. Proceedings Combined 28th International
Workshop on expressiveness in concurrency and 18th Workshop on structural operational
semantics (pp. 27–42). Open Publishing Association. https://doi.org/10.4204/EPTCS.339.5
Bisping, B., & Montanari, L. (2023). Coupled similarity and
contrasimilarity, and how to compute them. Arch. Formal Proofs,
2023. https://www.isa-afp.org/entries/Coupledsim_Contrasim.html
Bisping, B., & Montanari, L. (2024). Characterizing contrasimilarity
through games, modal logic, and complexity. Inf. Comput.,
300, 105191. https://doi.org/10.1016/J.IC.2024.105191
Bisping, B., & Nestmann, U. (2019). Computing coupled similarity. In
T. Vojnar & L. Zhang (Eds.), LNCS: Vol. 11427. Tools and
algorithms for the construction and analysis of systems:
TACAS (pp. 244–261). Springer. https://doi.org/10.1007/978-3-030-17462-0_14
Bisping, B., & Nestmann, U. (2021). A game for
linear-time–branching-time spectroscopy. In J. F. Groote & K. G.
Larsen (Eds.), LNCS: Vol. 12651. Tools and algorithms for the
construction and analysis of systems: TACAS (pp. 3–19). Springer.
https://doi.org/10.1007/978-3-030-72016-2_1
Bisping, B., Nestmann, U., & Peters, K. (2020). Coupled similarity:
The first 32 years. Acta Informatica, 57(3–5),
439–463. https://doi.org/10.1007/s00236-019-00356-4
Bouali, A. (1992). Weak and branching bisimulation in FCTOOL.
INRIA. https://inria.hal.science/inria-00074985
Brookes, S. D., Hoare, C. A. R., & Roscoe, A. W. (1984). A theory of
communicating sequential processes. J. ACM, 31(3),
560–599. https://doi.org/10.1145/828.833
Bulik, J. (2021). Statically analysing inter-process communication
in Elixir programs [Bachelor's thesis, Technische
Universität Berlin]. https://gitlab.com/MrGreenTea/stille-post
Bulychev, P. E. (2011). Game-theoretic simulation checking tool.
Programming and Computer Software, 37(4), 200. https://doi.org/10.1134/S0361768811040013
Bunte, O., Groote, J. F., Keiren, J. J. A., Laveaux, M., Neele, T.,
Vink, E. P. de, Wesselink, W., Wijs, A., & Willemse, T. A. C.
(2019). The mCRL2 toolset for analysing concurrent systems. In T. Vojnar
& L. Zhang (Eds.), Tools and algorithms for the construction and
analysis of systems (pp. 21–39). Springer International Publishing.
https://doi.org/10.1007/978-3-030-17465-1_2
Čerāns, K. (1993). Decidability of bisimulation equivalences for
parallel timer processes. In G. von Bochmann & D. K. Probst (Eds.),
Computer aided verification (pp. 302–315). Springer Berlin
Heidelberg. https://doi.org/10.1007/3-540-56496-9_24
Chen, X., & Deng, Y. (2008). Game characterizations of process
equivalences. In G. Ramalingam (Ed.), LNCS: Vol. 5356. Programming
languages and systems: APLAS (pp. 107–121). Springer. https://doi.org/10.1007/978-3-540-89330-1_8
Chistikov, D. (2024). An Introduction to the Theory
of Linear Integer Arithmetic. In S. Barman & S. Lasota
(Eds.), LIPIcs: Vol. 323. 44th IARCS annual conference on
foundations of software technology and theoretical computer science
(FSTTCS 2024) (pp. 1:1–1:36). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2024.1
Cleaveland, R. (1991). On automatically explaining bisimulation
inequivalence. In E. M. Clarke & R. P. Kurshan (Eds.), LNCS:
Vol. 531. Computer-aided verification: CAV’90 (pp. 364–372).
Springer. https://doi.org/10.1007/BFb0023750
Cleaveland, R., & Hennessy, M. (1993). Testing equivalence as a
bisimulation equivalence. Formal Aspects of Computing,
5(1), 1–20. https://doi.org/10.1007/BF01211314
Cleaveland, R., Parrow, J., & Steffen, B. (1990). The concurrency
workbench. In J. Sifakis (Ed.), Automatic verification methods for
finite state systems (pp. 24–37). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-52148-8_3
Cleaveland, R., & Sims, S. (1996). The NCSU concurrency workbench.
In R. Alur & T. A. Henzinger (Eds.), Computer aided
verification (pp. 394–397). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-61474-5_87
Cleaveland, R., & Sokolsky, O. (2001). Equivalence and preorder
checking for finite-state systems. In J. A. Bergstra, A. Ponse, & S.
A. Smolka (Eds.), Handbook of process algebra (pp. 391–424).
Elsevier Science. https://doi.org/10.1016/B978-044482830-9/50024-2
De Nicola, R., & Vaandrager, F. (1995). Three logics for branching
bisimulation. J. ACM, 42(2), 458–487. https://doi.org/10.1145/201019.201032
Deifel, H.-P., Milius, S., Schröder, L., & Wißmann, T. (2019).
Generic partition refinement and weighted tree automata. In M. H. ter
Beek, A. McIver, & J. N. Oliveira (Eds.), Formal methods – the
next 30 years (pp. 280–297). Springer International Publishing. https://doi.org/10.1007/978-3-030-30942-8_18
Delzanno, G., & Raskin, J.-F. (2000). Symbolic representation of
upward-closed sets. In S. Graf & M. Schwartzbach (Eds.), Tools
and algorithms for the construction and analysis of systems (pp.
426–441). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-46419-0_29
Duong, T. M. (2022). Developing an educational tool for
linear-time–branching-time spectroscopy [Bachelor's thesis].
Technische Universität Berlin.
England, J. (2021). HML synthesis of distinguished
processes [Bachelor's thesis]. Technische Universität Berlin.
Erné, M., Koslowski, J., Melton, A., & Strecker, G. E. (1993). A
primer on Galois connections. Annals of the New York
Academy of Sciences, 704(1), 103–125. https://doi.org/10.1111/j.1749-6632.1993.tb52513.x
Ésik, Z., Fahrenberg, U., Legay, A., & Quaas, K. (2013). Kleene
algebras and semimodules for energy problems. In D. Van Hung & M.
Ogawa (Eds.), Automated technology for verification and
analysis (pp. 102–117). Springer International Publishing. https://doi.org/10.1007/978-3-319-02444-8_9
Fahrenberg, U., Juhl, L., Larsen, K. G., & Srba, J. (2011). Energy
games in multiweighted automata. In A. Cerone & P. Pihlajasaari
(Eds.), Theoretical aspects of computing – ICTAC 2011 (pp.
95–115). Springer. https://doi.org/10.1007/978-3-642-23283-1_9
Fahrenberg, U., & Legay, A. (2014). The quantitative
linear-time–branching-time spectrum. Theoretical Computer
Science, 538, 54–69. https://doi.org/10.1016/j.tcs.2013.07.030
Fokkink, W., van Glabbeek, R., & Luttik, B. (2019). Divide and
congruence III: From decomposition of modal formulas to
preservation of stability and divergence. Information and
Computation, 268, 104435. https://doi.org/10.1016/j.ic.2019.104435
Ford, C., Milius, S., & Schröder, L. (2021). Behavioural preorders
via graded monads. 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), 1–13. https://doi.org/10.1109/LICS52264.2021.9470517
Forster, J., Schröder, L., Wild, P., Beohar, H., Gurke, S., &
Messing, K. (2024). Graded semantics and graded logics
for eilenberg-moore coalgebras. In B. König & H. Urbat (Eds.),
Coalgebraic methods in computer science (pp. 114–134). Springer
Nature Switzerland. https://doi.org/10.1007/978-3-031-66438-0_6
Fournet, C., & Gonthier, G. (2005). A hierarchy of equivalences for
asynchronous calculi. The Journal of Logic and Algebraic
Programming, 63(1), 131–173. https://doi.org/j.jlap.2004.01.006
Frutos Escrig, D. de, Gregorio Rodríguez, C., Palomino, M., & Romero
Hernández, D. (2013). Unifying the Linear
Time-Branching Time Spectrum of Strong Process Semantics.
Logical Methods in Computer Science, 9(2:11), 1–74. https://doi.org/10.2168/LMCS-9(2:11)2013
Frutos Escrig, D. de, Keiren, J. J. A., & Willemse, T. A. C. (2017).
Games for bisimulations and abstraction. Logical Methods in Computer
Science, 13(4:15), 1–40. https://doi.org/10.23638/LMCS-13(4:15)2017
Gale, D., & Stewart, F. M. (1953). Infinite games with perfect
information. In H. W. Kuhn & A. W. Tucker (Eds.), Contributions
to the theory of games, volume II (pp. 245–266). Princeton
University Press. https://doi.org/10.1515/9781400881970-014
Garavel, H. (2017). The VLTS benchmark suite. https://doi.org/10.18709/perscido.2017.11.ds100
Garavel, H. (2023). What is wrong with process calculi – and how to
recover? [Talk]. Open problems in concurrency theory (OPCT 2023),
University of Urbino, Italy. http://www.sti.uniurb.it/events/opct2023/SLIDES/garavel.pdf
Garavel, H., & Lang, F. (2022). Equivalence checking 40 years after:
A review of bisimulation tools. In N. Jansen, M. Stoelinga, & P. van
den Bos (Eds.), LNCS: Vol. 13560. A journey from process algebra via
timed automata to model learning: Essays dedicated to Frits
Vaandrager on the occasion of his 60th birthday (pp.
213–265). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-15629-8_13
Garavel, H., Lang, F., Mateescu, R., & Serwe, W. (2013). CADP
2011: A toolbox for the construction and analysis of
distributed processes. International Journal on Software Tools for
Technology Transfer, 15(2), 89–107. https://doi.org/10.1007/s10009-012-0244-z
Gazda, M., Fokkink, W., & Massaro, V. (2020). Congruence from the
operator’s point of view: Syntactic requirements on modal
characterizations. Acta Informatica, 57(3–5), 329–351.
https://doi.org/10.1007/s00236-019-00355-5
Geuvers, H. (2022). Apartness and distinguishing formulas in
Hennessy–Milner logic. In N. Jansen, M.
Stoelinga, & P. van den Bos (Eds.), LNCS: Vol. 13560. A journey
from process algebra via timed automata to model learning: Essays
dedicated to Frits Vaandrager on the occasion
of his 60th birthday (pp. 266–282). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-15629-8_14
Geuvers, H., & Golov, A. (2023). Positive
Hennessy-Milner logic for branching
bisimulation. https://arxiv.org/abs/2210.07380
Geuvers, H., & Jacobs, B. (2021). Relating apartness and
bisimulation. Logical Methods in Computer Science,
17(3). https://doi.org/10.46298/LMCS-17(3:15)2021
Gibson-Robinson, T., Armstrong, P., Boulgakov, A., & Roscoe, A. W.
(2014). FDR3: A modern refinement checker for
CSP. In E. Ábrahám & K. Havelund (Eds.),
International conference on tools and algorithms for the
construction and analysis of systems (pp. 187–201). Springer. https://doi.org/10.1007/978-3-642-54862-8_13
Göthel, T. (2012). Mechanical verification of parameterized
real-time systems [PhD thesis, Berlin Institute of Technology]. https://doi.org/10.14279/depositonce-3248
Groote, J. F., Jansen, D. N., Keiren, J. J. A., & Wijs, A. J.
(2017). An O(mlog n)
algorithm for computing stuttering equivalence and branching
bisimulation. ACM Transactions on Computational Logic (TOCL),
18(2), 13:1–13:34. https://doi.org/10.1145/3060140
Groote, J. F., & Martens, J. (2024). A quadratic lower bound for
simulation. https://doi.org/10.48550/arXiv.2411.14067
Groote, J. F., Martens, J., & Vink, Erik. P. de. (2023). Lowerbounds
for bisimulation by partition refinement. Logical Methods in
Computer Science, Volume 19, Issue 2.
https://doi.org/10.46298/lmcs-19(2:10)2023
Groote, J. F., & Mousavi, M. R. (2014). Modelling and analysis
of communicating systems. MIT Press. https://doi.org/10.7551/mitpress/9946.001.0001
Hauschild, J. (2023). Nonlinear counterfactuals in
Isabelle/HOL [Bachelor's thesis, Technische
Universität Berlin]. https://github.com/johanneshauschild/NonlinearCounterfactuals
Hennessy, M., & Milner, R. (1980). On observing nondeterminism and
concurrency. In J. W. de Bakker & J. van Leeuwen (Eds.), LNCS:
Vol. 85. Automata, languages and programming (pp. 299–309).
Springer. https://doi.org/10.1007/3-540-10003-2_79
Hoare, C. A. R. (1985). Communicating sequential processes.
Prentice-Hall, Inc.
Hoare, C. A. R. (2006). Why ever CSP? Electronic Notes
in Theoretical Computer Science, 162, 209–215. https://doi.org/10.1016/j.entcs.2006.01.031
Horne, R., Mauw, S., & Yurkov, S. (2023). When privacy fails, a
formula describes an attack: A complete and compositional verification
method for the applied π-calculus. Theoretical Computer
Science, 959, 113842. https://doi.org/10.1016/j.tcs.2023.113842
Hülsbusch, M., König, B., Küpper, S., & Stoltenow, L. (2020). Conditional Bisimilarity for Reactive Systems. In
Z. M. Ariola (Ed.), LIPIcs: Vol. 167. 5th international conference
on formal structures for computation and deduction (FSCD 2020) (pp.
10:1–10:19). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.FSCD.2020.10
Hüttel, H., & Shukla, S. (1996). On the complexity of deciding
behavioural equivalences and preorders. A survey
(BRICS RS-96-39H). University of Aarhus. https://doi.org/10.7146/brics.v3i39.20021
Kanellakis, P. C., & Smolka, S. A. (1983). CCS expressions, finite
state processes, and three problems of equivalence. PODC ’83,
228–240. https://doi.org/10.1145/800221.806724
Keiren, J. J. A., & Willemse, T. A. C. (2024). It’s all a game. In
V. Capretta, R. Krebbers, & F. Wiedijk (Eds.), Logics and type
systems in theory and practice: Essays dedicated to Herman
Geuvers on the occasion of his 60th birthday (pp.
150–167). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-61716-4_10
König, B., Mika-Michalski, C., & Schröder, L. (2020). Explaining
non-bisimilarity in a coalgebraic approach: Games and distinguishing
formulas. In D. Petrişan & J. Rot (Eds.), LNCS: Vol. 12094.
Coalgebraic methods in computer science: CMCS (pp. 133–154).
Springer. https://doi.org/10.1007/978-3-030-57201-3_8
Kruskal, J. B. (1972). The theory of well-quasi-ordering: A frequently
discovered concept. Journal of Combinatorial Theory, Series A,
13(3), 297–305. https://doi.org/10.1016/0097-3165(72)90063-5
Kučera, A., & Esparza, J. (1999). A logical viewpoint on
process-algebraic quotients. In J. Flum & M. Rodriguez-Artalejo
(Eds.), LNCS: Vol. 1683. Computer science logic: CSL (pp.
499–514). Springer. https://doi.org/10.1007/3-540-48168-0_35
Kupferman, O., & Shamash Halevy, N. (2022). Energy Games with Resource-Bounded Environments.
In B. Klin, S. Lasota, & A. Muscholl (Eds.), LIPIcs: Vol. 243.
33rd international conference on concurrency theory (CONCUR 2022)
(pp. 19:1–19:23). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2022.19
Kurzan, T. (2024). Implementierung eines
Contrasimilarity-Checkers für mCRL2 [Bachelor's thesis]. Technische
Universität Berlin.
Lange, M., Lozes, E., & Vargas Guzmán, M. (2014). Model-checking
process equivalences. Theoretical Computer Science,
560(3), 326–347. https://doi.org/10.1016/j.tcs.2014.08.020
Lê, H. N. (2020). Implementing coupled similarity as an automated
checker for mCRL2 [Bachelor's thesis].
Technische Universität Berlin.
Lemke, C. (2024). A formal proof of decidability of multi-weighted
declining energy games [Master’s thesis, Technische Universität
Berlin]. https://github.com/crmrtz/galois-energy-games/blob/main/master-thesis/masters_thesis.pdf
Lönne, B. (2023). An educational computer game about counterfactual
truth conditions [Bachelor's thesis, Technische Universität
Berlin]. https://github.com/Brunololos/counterfactuals-demo
Martens, J., & Groote, J. F. (2023). Computing
Minimal Distinguishing Hennessy-Milner Formulas is NP-Hard, but Variants
are Tractable. In G. A. Pérez & J.-F. Raskin (Eds.),
LIPIcs: Vol. 279. 34th international conference on concurrency
theory (CONCUR 2023) (pp. 32:1–32:17). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2023.32
Martens, J., & Groote, J. F. (2024). Minimal depth distinguishing
formulas without until for branching bisimulation. In V. Capretta, R.
Krebbers, & F. Wiedijk (Eds.), Logics and type systems in theory
and practice: Essays dedicated to Herman
Geuvers on the occasion of his 60th birthday (pp.
188–202). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-61716-4_12
Mattes, K. P. P. (2024). Measuring expressive power of
HML formulas in Isabelle/HOL [Bachelor's
thesis, Technische Universität Berlin]. https://github.com/ekeln/BA_formula_prices/raw/main/output/outline.pdf
Mayr, R. (2000). Process rewrite systems. Information and
Computation, 156(1), 264–286. https://doi.org/10.1006/inco.1999.2826
Milner, R. (1980). LNCS: Vol. 92. A calculus of communicating
systems. Springer. https://doi.org/10.1007/3-540-10235-3
Milner, R. (1989). Communication and concurrency.
Prentice-Hall, Inc.
Mohri, M. (2002). Semiring frameworks and algorithms for
shortest-distance problems. Journal of Automata, Languages and
Combinatorics, 7(3), 321–350. https://doi.org/10.25596/jalc-2002-321
Montanari, L. (2021). Kontrasimulation als Spiel
[Bachelor's thesis, Technische Universität Berlin]. https://github.com/luisamontanari/ContrasimGame
Nestmann, U., & Pierce, B. C. (2000). Decoding choice encodings.
Information and Computation, 163(1), 1–59. https://doi.org/10.1006/inco.2000.2868
Ozegowski, F. (2023). Integration eines generischen
Äquivalenzprüfers in CAAL [Bachelor's thesis,
Technische Universität Berlin]. https://github.com/Fabian-O01/CAAL
Paige, R., & Tarjan, R. E. (1987). Three partition refinement
algorithms. SIAM Journal on Computing, 16(6), 973–989.
https://doi.org/10.1137/0216062
Parrow, J., & Sjödin, P. (1992). Multiway synchronization verified
with coupled simulation. In W. R. Cleaveland (Ed.), CONCUR ’92:
Third international conference on concurrency theory stony brook, NY,
USA, august 24–27, 1992 proceedings (pp. 518–533). Springer. https://doi.org/10.1007/BFb0084813
Peacock, D. A. (2020). Process equivalences as a video game
[Bachelor's thesis, Technische Universität Berlin]. https://drive.google.com/drive/folders/19YuOCXI_7CEB4p9fgr6kDKCTbFwx2VU9
Peterson, G. L. (1981). Myths about the mutual exclusion problem.
Inf. Process. Lett., 12, 115–116. https://doi.org/10.1016/0020-0190(81)90106-X
Pohlmann, M. (2021). Reducing strong reactive bisimilarity to strong
bisimilarity [Bachelor's thesis, Technische Universität Berlin]. https://maxpohlmann.github.io/Reducing-Reactive-to-Strong-Bisimilarity/thesis.pdf
Ranzato, F., & Tapparo, F. (2010). An efficient simulation algorithm
based on abstract interpretation. Information and Computation,
208(1), 1–22. https://doi.org/10.1016/j.ic.2009.06.002
Reed, J. N., Roscoe, A. W., & Sinclair, J. E. (2007). Responsiveness
and stable revivals. Formal Aspects of Computing, 19,
303–319. https://doi.org/10.1007/s00165-007-0032-9
Reichert, J. M. (2020). Visualising and model checking
counterfactuals [Bachelor's thesis]. Technische Universität Berlin.
Roscoe, A. W. (2009). Revivals, stuckness and the hierarchy of
CSP models. Journal of Logic and Algebraic
Programming, 78(3), 163–190. https://doi.org/10.1016/j.jlap.2008.10.002
Sandt, E. (2022). A video game about reactive bisimilarity
[Bachelor's thesis, Technische Universität Berlin]. https://github.com/eloinoel/ReactiveBisimilarityGame
Sangiorgi, D. (1996). A theory of bisimulation for the π-calculus. Acta
Informatica, 33(1), 69–97. https://doi.org/10.1007/s002360050036
Sangiorgi, D. (2012). Introduction to bisimulation and
coinduction. Cambridge University Press. https://doi.org/10.1017/CBO9780511777110
Shukla, S. K., Hunt III, H. B., & Rosenkrantz, D. J. (1996).
HORNSAT, model checking, verification and games: Extended
abstract. In R. Alur & T. A. Henzinger (Eds.), LNCS: Vol. 1102.
Computer aided verification: CAV (pp. 99–110). Springer. https://doi.org/10.1007/3-540-61474-5_61
Spork, T., Baier, C., Katoen, J.-P., Piribauer, J., & Quatmann, T.
(2024). A Spectrum of Approximate Probabilistic
Bisimulations. In R. Majumdar & A. Silva (Eds.), LIPIcs:
Vol. 311. 35th international conference on concurrency theory (CONCUR
2024) (pp. 37:1–37:19). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2024.37
Steffen, B. (1989). Characteristic formulae. In G. Ausiello, M.
Dezani-Ciancaglini, & S. R. Della Rocca (Eds.), Automata,
languages and programming (pp. 723–732). Springer Berlin
Heidelberg. https://doi.org/10.1007/BFb0035794
Stirling, C. (1996). Modal and temporal logics for processes. In F.
Moller & G. Birtwistle (Eds.), LNCS: Vol. 1043. Logics for
concurrency: Structure versus automata (pp. 149–237). Springer. https://doi.org/10.1007/3-540-60915-6_5
Stöcker, V. (2024). Higher-order diadic µ-calculus—an efficient
framework for checking process equivalences? [Bachelor's thesis].
Technische Universität Berlin.
Straßnick, T., & Ozegowski, F. (2024). Integration of the weak
spectroscopy into CAAL. Technische Universität Berlin. https://github.com/equivio/CAAL/blob/spectroscopy/docs/CAAL_weak_Spectroscopy.pdf
Tan, L. (2002a). An abstract schema for equivalence-checking games. In
A. Cortesi (Ed.), LNCS: Vol. 2294. Verification, model checking, and
abstract interpretation, third international workshop,
VMCAI 2002, venice, italy, january 21-22, 2002, revised
papers (pp. 65–78). Springer. https://doi.org/10.1007/3-540-47813-2_5
Tan, L. (2002b). Evidence-based verification. State University
of New York at Stony Brook. https://www.researchgate.net/publication/277283542_Evidence-Based_Verification
Trzeciakiewicz, M. (2021). Linear-time–branching-time spectroscopy
as an educational web browser game [Bachelor's thesis, Technische
Universität Berlin]. https://github.com/Marii19/the-spectroscopy-invaders
Valmari, A. (2009). Bisimilarity minimization in o(m logn) time. In G.
Franceschinis & K. Wolf (Eds.), Applications and theory of petri
nets (pp. 123–142). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02424-5_9
Valmari, A. (2020). All congruences below stability-preserving fair
testing or CFFD. Acta Informatica, 57(3), 353–383. https://doi.org/10.1007/s00236-019-00364-4
van Glabbeek, R. J. (1990). The linear time–branching time spectrum:
Extended abstract. In J. C. M. Baeten & J. W. Klop (Eds.), LNCS:
Vol. 458. CONCUR’90 (pp. 278–297). Springer. https://doi.org/10.1007/BFb0039066
van Glabbeek, R. J. (1993). The linear time–branching time spectrum
II: The semantics of sequential systems with silent moves;
extended abstract. In E. Best (Ed.), LNCS: Vol. 715. CONCUR’93
(pp. 66–81). Springer. https://doi.org/10.1007/3-540-57208-2_6
van Glabbeek, R. J. (2001). The linear time–branching time spectrum
I: The semantics of concrete, sequential processes. In J.
A. Bergstra, A. Ponse, & S. A. Smolka (Eds.), Handbook of
process algebra (pp. 3–99). Elsevier. https://doi.org/10.1016/B978-044482830-9/50019-9
van Glabbeek, R. J. (2023). Modelling mutual exclusion in a process
algebra with time-outs. Information and Computation,
294, 105079. https://doi.org/10.1016/j.ic.2023.105079
van Glabbeek, R. J., & Weijland, W. P. (1996). Branching time and
abstraction in bisimulation semantics. Journal of the ACM
(JACM), 43(3), 555–600. https://doi.org/10.1145/233551.233556
Vogel, G. (2024). Accelerating process equivalence energy games
using WebGPU [Bachelor's thesis, Technische
Universität Berlin]. https://github.com/Gobbel2000/gpuequiv
Voorhoeve, M., & Mauw, S. (2001). Impossible futures and
determinism. Information Processing Letters, 80(1),
51–58. https://doi.org/10.1016/S0020-0190(01)00217-4
Wenzel, M. (2025). The Isabelle/Isar reference
manual. https://isabelle.in.tum.de/dist/Isabelle2025/doc/isar-ref.pdf
Wimmer, R. (2011). Symbolische Methoden
für die probabilistische Verifikation –
Zustandsraumreduktion und Gegenbeispiele
[Dissertation, Albert-Ludwigs-Universität Freiburg]. https://freidok.uni-freiburg.de/data/7932
Wimmer, R., Herbstritt, M., Hermanns, H., Strampp, K., & Becker, B.
(2006). Sigref: A symbolic bisimulation tool box. In S.
Graf & W. Zhang (Eds.), Automated technology for verification
and analysis: 4th international symposium, ATVA 2006, beijing, china,
october 23-26, 2006. proceedings (pp. 477–492). Springer. https://doi.org/10.1007/11901914_35
Wißmann, T., Milius, S., & Schröder, L. (2021). Explaining Behavioural Inequivalence Generically in
Quasilinear Time. In S. Haddad & D. Varacca (Eds.),
LIPIcs: Vol. 203. 32nd international conference on concurrency
theory (CONCUR 2021) (pp. 32:1–32:18). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2021.32
Wittig, T. (2020). Charting the jungle of process calculi
encodings [Bachelor's thesis, Technische Universität Berlin]. https://concurrency-theory.org/process-jungle/
Wortmann, J. K., Olesen, S. R., & Enevoldsen, S. (2015).
CAAL 2.0 – recursive HML, distinguishing formulae,
equivalence collapses and parallel fixed-point computations (Vol.
DES103F15) [Student project supervised by Jiří Srba and Kim Guldstrand
Larsen]. Aalborg University. https://caal.cs.aau.dk/docs/CAAL2_RDEP.pdf
Wrusch, M. (2020). Ein Computerspiel zum
Erlernen von Verhaltensäquivalenzen
[Bachelor's thesis]. Technische Universität Berlin.
Zielonka, W. (1998). Infinite games on finitely coloured graphs with
applications to automata on infinite trees. Theoretical Computer
Science, 200(1), 135–183. https://doi.org/10.1016/S0304-3975(98)00009-7