Notation

Basics

iff “if and only if”
\smash{|{A}|} Number of elements of A
\mathrm{id}_{A} Identity relation on A
2^{A} Power set of A
A^*, A^{\omega}, A^{\infty} Language of finite / infinite / finite-or-infinite words over alphabet A
\mathcal{R}^{-1} Inverse relation of \mathcal{R}
\operatorname{\mathrm{dom}}(f) Domain of where function f is defined, \bot counts as undefined (first appearing in Definition 4.1)
\mathbb{N}, \mathbb{N}_\infty Natural numbers / natural numbers extended by \infty as top element
\mathrel{≔} Definitional equality; in the context of CCS, \mathsf{X} \mathrel{≔}P also means \mathcal V(\mathsf{X}) \mathrel{≔}P (Definition 2.3); in the context of algorithms, denotes variable assignment

Orders and Vectors

\leq less‑than‑or‑equal‑to, usually pointwise on vectors
\operatorname{\mathrm{Min}}(A), \operatorname{\mathrm{Max}}(A) Set of minimal / maximal elements in A in the context of a preorder \leq
\sqcup / \sup, \sqcap / \inf Least upper bound / greatest lower bound in the context of a lattice (Definition 3.4)
{}\uparrow A, {}\downarrow A Upward-closure / downward-closure of set A in the context of a preorder \leq (Definition 3.4)
\hat{\mathbf{e}}_{k} Unit vector; component k is 1, all others 0 (in the context of some dimensionality d)
\mathbf{0} Vector of zeros (in the context of some dimensionality d); not to be confused with \mathbf{0} as terminated \textsf{CCS} process in Definition 2.2

Transition Systems

\xrightarrow{\smash{\raisebox{-2pt}{$\scriptstyle{\alpha}$}}} Transition relation (in context of a transition system, Definition 2.1), usually due to operational CCS semantics (Definition 2.3); can also connect sets of states
\overset{\smash{\raisebox{-2pt}{$\scriptstyle{\alpha}$}}}{\nrightarrow} Absence of an \alpha-transition
\mathrel{\twoheadrightarrow} Internal transition (Definition 6.1)
\xrightarrow{\smash{\raisebox{-2pt}{$\scriptstyle{(\alpha)}$}}} Soft transition (Definition 6.1)
\xtwoheadrightarrow{\smash{\raisebox{-2pt}{$\scriptstyle{\vec{w}}$}}} Weak \vec{w}-word step sequence (Definition 6.1)
\operatorname{Der}(p, \alpha) \alpha-derivatives of p (Definition 2.1)
\operatorname{Ini}(p) Enabled actions of p (Definition 2.1)
\langle \alpha \rangle Modality of observing an \alpha-step (Definition 2.11)
( \alpha ) Modality of observing a \tau-soft \alpha-step (Definition 6.1 and 6.5)
\langle \varepsilon \rangle Modality of allowing internal behavior (Definition 6.1 and 6.5)
\llbracket \varphi \rrbracket Set of states that fulfill \varphi (Definition 2.12)
{\mathcal{S} \! / \!\! \sim} Quotient system on equivalence classes [\cdot]_{\sim} (Definition 2.10)

Behavioral Equivalences

\preceq_{N}, \sim_{N} Behavioral preorder / equivalence with respect to notion N (full names in Figure 3.8 and 6.5)
\sim_\mathrm{T}, \sim_\mathrm{S}, \sim_\mathrm{B} Strong trace equivalence, similarity, bisimilarity (Definition 2.5 and 2.7)
\preceq_{\mathcal{O}^{}_{}}, \sim_{\mathcal{O}^{}_{}} Behavioral preorder / equivalence derived from a sublogic \mathcal{O}^{}_{}\subseteq \mathsf{HML} (Definition 2.13)
\mathcal{O}^{}_{N} Observation logic for a notion N \in \mathbf{N} in the context of a spectrum (Definition 3.5)
\mathcal{O}^{}_{\mathrm{\lfloor B \rfloor}} Bisimulation observation logic (Definition 2.16)
\mathsf{expr}^{}(\varphi) Syntactic expressiveness price of \varphi in the context of a spectrum (Definition 3.6)
\varphi distinguishes” Formula \varphi is true for state on left-hand side and not true for state(s) on right-hand side (Definition 2.13 and 7.3)

Games

\mathrel{\smash{›\!\!\frac{\scriptstyle{\;\enspace\;}}{}\!\!›}} Game move (Definition 2.17)
\mathrel{\smash{›\!\!\frac{\scriptstyle{\;u\;}}{}\!\!›}} Game move, labeled by an energy update (Definition 4.1)
\mathcal{G}_{\mathrm{B}} Bisimulation game in the context of a transition system (Definition 2.22)
\mathcal{G}_{\mathrm{B}}^{\smash{🗲 }} Bisimulation energy game (Definition 4.8)
\mathsf{Win}_\mathrm{a}, \mathsf{Win}_\mathrm{d} Attacker / defender winning regions in the context of a reachability game (Definition 2.20), or winning budgets in an energy game (Definition 4.3)
\mathsf{Win}^{\mathrm{min}}_\mathrm{a}(g) Minimal attacker winning budgets for position g in an energy game (Definition 4.3), solution to Problem 4.1
\mathit{upd}, \smash{\mathit{upd}^{↺}} Updates on energy games (Definition 4.1) and their undo-function in the algorithm for Galois energy games (Algorithm 4.1)
\mathbf{En} Energy levels on declining energy games in the context of a dimensionality d (Definition 4.5)
\mathsf{upd}, \smash{\mathsf{upd}^{↺}} Updates on declining energy games (Definition 4.5) and their undo-version (Definition 4.12)
\mathtt{min}_{A} A special kind of update component in declining energy games (Definition 4.5)

Spectroscopy

\mathbf{N}_{p,q} Notions from \mathbf{N} in the context of a spectrum preordering states p and q (solution to Problem 3.1)
\mathcal{G}_{\triangle} Strong spectroscopy game, in the context of a transition system (Definition 5.1)
\mathcal{G}_{\blacktriangle} Clever spectroscopy game (Definition 5.4)
\mathcal{G}_{\triangle N}, \mathcal{G}_{\blacktriangle N} Equivalence game for N, derived from a spectroscopy game (Definition 5.5)
\mathcal{G}_{\nabla} Weak spectroscopy game, in the context of a transition system with silent steps (Definition 7.1)
\mathcal{G}_{\widehat{\nabla}} Simplified weak spectroscopy game (Figure 7.3)
\mathsf{Strat}_\mathrm{B}, \mathsf{Strat}_{\triangle}, \mathsf{Strat}_{\nabla} Strategy formulas in the context of polynomial / strong / weak spectroscopy (Definition 4.9, 5.2, 7.2)

Complexity

\mathit{O}(f) Set of functions that grow to infinity at most as quickly as function f
\textsf{P}, \textsf{NP}, \textsf{PSPACE} Complexity classes of deterministic polynomial time / nondeterministic polynomial time / polynomial space complexity

Recurring Examples

\mathsf{P}, \mathsf{Q} Two systems of philosophers, differing in their determinism (Example 2.1, 2.2, 2.3)
\mathsf{T} Trolled philosophers with additional \includegraphics[height=1em, alt=q3]{img/trollface.png}-deadlock (Example 2.7)
\mathsf{Pe}, \mathsf{Mx} Implementation of Peterson’s mutual exclusion protocol and its specification (Example 1.1), styled Pe and Mx for their expression in the tool (Application to Peterson’s Mutual Exclusion Protocol)